Хімія, фізика та технологія поверхні, 2016, 7 (1), 73-85.

Структура та морфологія плівок поліпіролу, хімічно осаджених на поліетилентерефталатні підкладки



DOI: https://doi.org/10.15407/hftp07.01.073

M. M. Yatsyshyn, Yu. A. Hnizdiukh

Анотація


Розглянуто можливість модифікації поліетилентерефталатного плівкового субстрату плівками поліпіролу в процесі in situ хімічного окиснення піролу амоній пероксодисульфатом у водному 0.5 М розчині цитратної кислоти за концентрацій піролу у розчині 0.025 і 0.05 М. Досліджено УФ-В та ІЧ-ФП спектри плівок поліпіролу, допованих у процесі синтезу цитратною кислотою, дедопованих натрій гідроксидом та повторно допованих цитратною кислотою, на поліетилентерефталатному плівковому субстраті. Дослідження морфології плівок поліпіролу показало, що на фоні практично суцільних шарів поліпіролу наявні делокалізовані глобулярні мікроутворення макромолекул є в основному сферичної форми.

Ключові слова


пірол; плівки поліпіролу; цитратна кислота; поліетилентерафталат; допування; дедопування; морфологія

Повний текст:

PDF

Посилання


1. Liu Y.C., Hwang B.J. Mechanism of conductivity decay of polypyrrole exposed to water and enhancement of conductivity stability of copper(I)-modified polypyrrole. J. Electroanal. Chem. 2001. 501(1–2): 100.  https://doi.org/10.1016/S0022-0728(00)00510-6 

2. Onoda M., Tada K., Shinkuma K.A. In situ polymerization process of polypyrrole ultrathin films. Thin Solid Films. 2006. 499(1–2): 61. https://doi.org/10.1016/j.tsf.2005.07.004 

3. Macasaquit A.C., Binag C.A. Preparation of conducting polyester textile by in situ polymerization of pyrrole. Philip. J. Sci. 2010. 139(2): 189.

4. Kaynak A., Najar S.S., Foitzik R.C. Conducting nylon, cotton and wool yarns by continuous vapor polymerization of pyrrole. Synth. Met. 2008. 158(1–2): 1. https://doi.org/10.1016/j.synthmet.2007.10.016 

5. Hessa E.H., Waryo T., Sadik O.A., Iwuoha E.I., Baker P.G.L. Constitution of novel polyamic acid/polypyrrole composite films by in-situ electropolymerization. Electrochim. Acta. 2014. 128: 485.  https://doi.org/10.1016/j.electacta.2014.01.038 

6. Rinaldi A.W., Kunita M.H., Santos M.J.L., Radovanovic E., Rubira A.F., Girotto E.M. Solid phase photopolymerization of pyrrole in poly(vinylchloride) matrix. Eur. Polym. J. 2005. 41(11): 2711. https://doi.org/10.1016/j.eurpolymj.2005.05.029 

7. Elkomy G.M., Mousa S.M., Abo Mostafa H. Structural and optical properties of pure PVA/PPY and cobalt chloride doped PVA/PPY films. Arabian J. Chem. 2012. http://www.sciencedirect.com/science/article/pii/ S1878535212001050.

8. Mehmood T., Kaynak A., Dai X.J., Kouzani A.,Magniez K., Rubin de Celis D., Hurren C.J., Plessis J. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion. Mater. Chem. Phys. 2014. 143(2): 668.  https://doi.org/10.1016/j.matchemphys.2013.09.052 

9. Küttel C., Stemmer A., Wei X. Strain response of polypyrrole actuators induced by redox agents in solution. Sensors and Actuators B Chemicals. 2009. 141(2): 478. https://doi.org/10.1016/j.snb.2009.06.044 

10. Kaneto K., Fujisue H., Yamato K., Takashima W. Load dependence of soft actuators based on polypyrrole tubes. Thin Solid Films. 2008. 516(9): 2808. https://doi.org/10.1016/j.tsf.2007.04.056 

11. Wang Y., Jing X. Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 2005. 16(4): 344. https://doi.org/10.1002/pat.589 

12. Küttel C., Stemmer A., Wei X. Strain response of polypyrrole actuators induced by redox agents in solution. Sensors and Actuators B Chemicals. 2009. 141(2): 478. https://doi.org/10.1016/j.snb.2009.06.044 

13. Yue B., Wang C., Ding X., Wallace G.G. Electrochemically synthesized stretchable polypyrrole/fabric electrodes for supercapacitor. Electrochim. Acta. 2013. 113: 17. https://doi.org/10.1016/j.electacta.2013.09.024 

14. Babu K.F., Subramanian S.P.S., Kulandainathan A.M. Functionalisation of fabrics with conducting polymer for tuning capacitance and fabrication of supercapacitor. Carbohydr. Polym. 2013. 94(1): 487.  https://doi.org/10.1016/j.carbpol.2013.01.021 

15. Ahuj T., Mir I.A., Rajesh D.K. Potentiometric urea biosensor based on BSA embedded surface modified polypyrrole film. Sensors and Actuators B Chemicals. 2008. 134(1): 140. https://doi.org/10.1016/j.snb.2008.04.020 

16. Ramanavicius A., Ramanavicien A., Malinauskas A. Electrochemical sensors based on conducting polymer–polypyrrole. Electrochim. Acta. 2006. 51(27): 6025. https://doi.org/10.1016/j.electacta.2005.11.052 

17. Onar N., Akşit A.C., Ebeoglugil M.F. Birlik I., Celik E., Ozdemir I. Structural, electrical, and electromagnetic properties of cotton fabrics coated with polyaniline and polypyrrole. J. Appl. Polym. Sci. 2009. 114(4): 2003.  https://doi.org/10.1002/app.30652 

18. Kim B.C., Innis P.C., Wallace G.G. Low C.T.J., Walsh F.C., Cho W.-J. Electrically conductive coatings of nickel and polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) on nylon Lycra® textiles. Prog. Org. Coat. 2013. 76(9): 1296.  https://doi.org/10.1016/j.porgcoat.2013.04.004 

19. Maiti S., Das D., Sen K. Characterization of electro-conductive fabrics prepared by in situ chemical and electrochemical polymerization of pyrrole onto polyester fabric. Mat. Sci. Eng. B. 2014. 187: 96.  https://doi.org/10.1016/j.mseb.2014.05.003 

20. Kim H.S., Park D.H., Lee Y.B., Kim D.-Ch., Kim H.-J., Kim J. Dope d and dedoped polypyrrole nanowires by using a BMIMPF6 ionic liquid. Synth. Met. 2007. 157(22–23): 910. https://doi.org/10.1016/j.synthmet.2007.09.008 

21. Wu T.-M., Chang H.-L., Lin Y.-W. Synthesis and characterization of conductive polypyrrole/multi-walled carbon nanotubes composites with improved solubility and conductivity. Compos. Sci. Technol. 2009. 69(5): 639.  https://doi.org/10.1016/j.compscitech.2008.12.010 

22. Kharat H.J., Kakde K.P., Savaley P.A., Datta K., Ghosh P., Shirsat M.D. Synthesis of polypyrrole films for the development of ammonia sensor. Polym. Adv. Technol. 2007. 18(5): 397. https://doi.org/10.1002/pat.903 

23. Wang Y., Chen W., Zhou D., Xue G. Synthesis of conducting polymer spiral nanostructures using a surfactant crystallite template. Macromol. Chem. Phys. 2009. 210(11): 936. https://doi.org/10.1002/macp.200900016 

24. Wang T., Zhong W., Ning X., Wang Y., Yang W. Facile route to hierarchical conducting polymer nanostructure: synthesis of layered polypyrrole network plates. J. Appl. Polym. Sci. 2009. 114(6): 3855.  https://doi.org/10.1002/app.31023 

25. Mahmud H.N.M., Kassim A., Zainal Z., Yunus W.M.M. Fourier transform infrared study of polypyrrole–poly(vinyl alcohol) conducting polymer composite films: evidence of film formation and characterization. J. Appl. Polym. Sci. 2006. 100(5): 4107.  https://doi.org/10.1002/app.23327 

26. Karim M.R., Lee, C.J., Lee M.S. Synthesis of conducting polypyrrole by radiolysis polymerization method. Polym. Adv. Technol. 2007. 18(11): 916. https://doi.org/10.1002/pat.931 

27. Chougulea M.A., Pawara S.G., Godsea P.R., Mulik R.N., Sen S., Patil V.B. Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci. Lett. 2011. 1(1): 6. https://doi.org/10.4236/snl.2011.11002 

28. Wei M., Lu Y. Templating fabrication of polypyrrole nanorods/nanofibers. Synth. Met. 2009. 159(11): 1061. https://doi.org/10.1016/j.synthmet.2009.01.031 

29. Han Y., Lu Y. Characterization and electrical properties of conductive polymer/colloidal graphite oxide nanocomposites. Compos. Sci. Technol. 2009. 69(7–8): 1231. https://doi.org/10.1016/j.compscitech.2009.02.028 

30. Marini M., Pilati F., Pourabbas B. Smooth surface polypyrrole-silica core-shell nanoparticles: preparation, characterization and properties. Macromol. Chem. Phys. 2008. 209(13): 1374. https://doi.org/10.1002/macp.200800009 




DOI: https://doi.org/10.15407/hftp07.01.073

Copyright (©) 2016 M. M. Yatsyshyn, Yu. A. Hnizdiukh

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.