Хімія, фізика та технологія поверхні, 2016, 7 (3), 300-308.

Синтез, структура та електрохімічні властивості ультрадисперсного аморфного β-FeOOH



DOI: https://doi.org/10.15407/hftp07.03.300

A. B. Hrubiak, V. O. Kotsyubynsky, L. V. Mokhnatska, V. V. Moklyak, P. I. Kolkovsky, G. I. Mudryk

Анотація


Представлено спосіб отримання ультрадисперсного аморфного β-FeOOHвідпалом Fe(OH)3, синтезованого гідротермальною обробкою розчину цитрату заліза при 120°С впродовж 5 год. За допомогою рентгенівського аналізу і месбауерівської спектроскопії визначено фазовий склад та магнітну мікроструктуру гідрооксидів заліза, отриманих у результаті відпалу Fe(OH)3 в діапазоні 150–300°С, та простежено механізми фазових перетворень Fe(OH)3→β-FeOOH. Встановлено, що після відпалу при 350°С відбувається фазова трансформація β-FeOOH→α- Fe2 O3. Досліджено електрохімічні властивості ультрадисперсного аморфного β -FeOOH, отриманого відпалом при 300°С, за допомогою триелектродної комірки у 3.5 М водному розчині КОН. Встановлено ефективність використання композитуβ-FeOOH / вуглецеві нанотрубки як активного електродного матеріалу у водних електролітах.  

Ключові слова


ультрадисперсний аморфний β-FeOOH; іон заліза; магнітна мікроструктура; фазова трансформація

Повний текст:

PDF

Посилання


1. Xiong W., Xiangying C., Lisheng G., Huagui Z., Mingrong J., Chenming T., Tao S., Zude Z. Synthesis of β-FeOOH and α-Fe2O3 nanorods and electrochemical properties of β-FeOOH. J. Mater. Chem. 2004. 14: 905.  https://doi.org/10.1039/B310722A 

2. Zhihui X., Jianru L., Lixiang Z. Template-Free Hydrothermal Synthesis of β-FeOOH Nanorods and Their Catalytic Activity in the Degradation of Methyl Orange by a Photo-Fenton-Like Process. Open Journal of Inorganic Non-Metallic Materials. 2013. 3(4): 58.  https://doi.org/10.4236/ojinm.2013.34010 

3. Frausto C.T., Garcia A.A. Zinc and Pyrrole-added Akaganeite (β-FeOOH) Films by Ultrasonic Spray Pyrolisis Assessed as Propane Sensors. Sensors and Transducers. 2012. 146(11): 170.

4. Garcia K. E., Barrero C.A., Morales A.L., Greneche J.-M. Magnetic structure of synthetic akaganeite: A review of Mössbauer data. Rev. Fac. Ing. Univ. Antioquia. 2009. (49): 185.

5. Amine K., Yasuda H., Yamachi M. β-FeOOH, a new positive electrode material for lithium secondary batteries. J. Power Sources. 1999. 81–82(1–2): 221.  https://doi.org/10.1016/S0378-7753(99)00138-X 

6. Mackay A.L. β-Ferric Oxyhydroxide–Akaganéite. Mineral Mag. 1962. 33(259): 270.  https://doi.org/10.1180/minmag.1962.033.259.02 

7. Post J. E., Buchwald V. F. Crystal structure refinement of akaganeite. Am. Mineral. 1991. 76(1–2): 272.

8. Post J.E., Heaney P.J., Von Dreele R.B., Hanson J.C. Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. Am. Mineral. 2003. 88(5): 782.  https://doi.org/10.2138/am-2003-5-607 

9. Chambaere D.G., De Grave E. On the influence of the dual iron co-ordination on the hyperfine field in βFeOOH. Journal of Magnetic and Magnetism Materials. 1984. 44: 349.  https://doi.org/10.1016/0304-8853(84)90263-4 

10. Pollard R.J., Cardile C.M., Lewis D.G., Brown L.J. Characterization of FeOOH Polymorphs and Ferrihydrite Using Low-Temperature, Applied-Field, Mössbauer Spectroscopy. Clay Miner. 1992. 27: 57.  https://doi.org/10.1180/claymin.1992.027.1.06 

11. Pankhurst Q.A., Pollard R.J. Mossbauer-spectra of antiferromagnetic powders in applied fields. J. Phys.: Condens. Matter. 1990. 2(35): 7329.  https://doi.org/10.1088/0953-8984/2/35/008 

12. Rezel D., Genin J.M.R. The substitution of chloride ions to OH−-Ions in the akaganeite beta ferric oxyhydroxide studied by Mössbauer effec. Hyperfine Interact. 1990. 57(1): 2067.  https://doi.org/10.1007/BF02405765 

13. Dezsi I., Keszthelyi L., Kutgawczuk D., Moln B. Eissa N.A. Mössbauer Study of β- and δ-FeOOH and their Disintegration Products. Phys. Stat. Sol. 1967. 22(2): 617.  https://doi.org/10.1002/pssb.19670220234 

14. Braun H., Gallagher K.J. β-Fe2O3, a New Structural Form of Iron (III) Oxide. Nature Phys. Sci. 1972. 240: 13.  https://doi.org/10.1038/physci240013a0 

15. Howe A.T., Gallagher K.J. Mössbauer studies in the colloid system β-FeOOH–β-Fe2O3: structures and dehydration mechanism. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases. 1975. 71: 22.

16. Gonzalez-Calbet J.M., Alario Franco M.A. A thermogravimetric and electron microscopy study of the decomposition of akaganeite. Thermochim. Acta. 1982. 58(1): 45.  https://doi.org/10.1016/0040-6031(82)87138-4 

17. Chambaere D.G., De Grave E. The β-FeOOH to α-Fe2O3 phase transformation: Structural and magnetic phenomena. Phys. Chem. Miner. 1985. 12(3): 176.  https://doi.org/10.1007/BF00308211 

18. Nagai N., Hosoito N., Kiyama M., Shinjo T., Takada T. The Thermal Decomposition Intermediate Product of P-FeO(OH). In: Ferrites. Proc. of the International Conference (Sept.-Oct., 1980, Japan). P. 247.

19. Revo S., Alekseev A., Ivanenko E., Labi T., Boubertakh A., Hamamda S. Structure, tributechnical, and thermophysical characterristics of the fluoroplastic carbonnanotubes material. Nanoscale Res. Lett. 2014. 9(1): 1.  https://doi.org/10.1186/1556-276X-9-213 

20. Gin'e A. X-ray crystal. Theory and practice. (Moscow: Science, 1961).

21. Sei J.O., Cook D.C., Townsend H.E. Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel. Hyperfine Interact. 1998. 112(1–4): 59.

22. Bassi P.S., Randhawa B.S., Jamwal H.S. Mossbauer study of the thermal decomposition of iron(III) citrate pentahydrate. J. Therm. Anal. 1984. 29: 439. https://doi.org/10.1007/BF01913454 

23. Buchanan D.N.E. Mossbauer and spectroscopy of radiolytic photolytic effects on ferric citrate. J. Inorg. Nucl. Chem. 1970. 32(11): 3531.  https://doi.org/10.1016/0022-1902(70)80161-0 

24. Bernal J.D., Dasgupta D.R., Mackay A.L. The Oxides and Hydroxides of Iron and Their Structural Inter-Relationships. Clay Miner. 1959. 4(21): 15.  https://doi.org/10.1180/claymin.1959.004.21.02 

25. Chambaere D.G., De Grave E., Vanleerberghe R.L., Vandenberghe R.E. The electric field gradient at the iron sites in β-FeOOH. Hyperfine Interact. 1984. 20(4): 249.  https://doi.org/10.1007/BF02069375 

26. Chambaere D.G., De Grave E. A study of the non-stoichiometrical halogen and water content of β-FeOOH. Phys. Stat. Sol. 1984. 83: 93.  https://doi.org/10.1002/pssa.2210830109 

27. Stahl K., Nielsen K., Jiang J., Lebech B., Hanson J.C., Norby P., Lanschot J. On the akaganeite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corros. Sci. 2003. 45(11): 2563.  https://doi.org/10.1016/S0010-938X(03)00078-7 

28. Barrero C.A., Garcia K.E., Morales A.L. Kodjikian S., Greneche J.M. New analysis of the Mössbauer spectra of akaganeite. J. Phys.: Condens. Matter. 2006. 18(29): 6827.  https://doi.org/10.1088/0953-8984/18/29/020 

29. Garcia K.E., Morales A.L., Barrero C.A., Greneche J.M. Characterization of akaganeite synthesized in the presence of Al3+, Cr3+, and Cu2+ ions and urea. Mater. Chem. Phys. 2008. 112(1): 120.  https://doi.org/10.1016/j.matchemphys.2008.05.021 

30. Garcia K.E., Morales A.L., Barrero C.A., Arroyave C.E., Greneche J.M. Magnetic and crystal structure refinement in akaganeite nanoparticle. Physica B. 2004. 354(1–4): 187.  https://doi.org/10.1016/j.physb.2004.09.045 

31. Kuzmann E., Nagy S., Vertes A. Critical Review Of Analytical Applications Of Mossbauer Spectroscopy Illustrated By Mineralogical And Geological Examples. Pure Appl. Chem. 2003. 75(6): 801.  https://doi.org/10.1351/pac200375060801 

32. Long C., Jiang L., Wei T. Yan J., Fan Z. High-performance asymmetric supercapacitors with lithium interca-lation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A. 2014. 2(39): 16678.  https://doi.org/10.1039/C4TA03241A 




DOI: https://doi.org/10.15407/hftp07.03.300

Copyright (©) 2016 A. B. Hrubiak, V. O. Kotsyubynsky, L. V. Mokhnatska, V. V. Moklyak, P. I. Kolkovsky, G. I. Mudryk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.