Хімія, фізика та технологія поверхні, 2016, 7 (3), 354-360.

Вплив дисперсного йодиду міді на ферментативну активність дріжджових клітин Saccharomyces cerevisiae



DOI: https://doi.org/10.15407/hftp07.03.354

G. M. Bagatska, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Анотація


Методом диференціальної мікрокалориметрії досліджено вплив частинок йодиду міді (CuI) у водній суспензії дріжджових клітин на інтенсифікацію процесу їх ферментації в умовах ендогенного метаболізму. Показано, що присутність частинок CuI в суспензії дріжджів приводить до порушення регулярності теплового процесу, яке проявляється в поділі стадій оводнення і їх життєдіяльності, структурною реорганізацією в системі плазмолеми для захисту дріжджових клітин від бактерицидного впливу частинок йодиду міді.

Ключові слова


дріжджові клітини; мікрокалориметрія; процес ферментації; дисперсний йодид міді

Повний текст:

PDF

Посилання


1. Biogeotechnology of metall.  Ed. G.I Karavaiko, George Rossi, A.A. Agate et al. (Moscow: CIP SCCT, 1989). [in Russian].

2. Ulberh Z.R., Gruzina T.G., Karpov A.I. Nanotechnology in medicine: the role of colloid-chemical processes. Herald of the National Academy of Sciences of Ukraine. 2008. (8): 28.

3. de Villiers M., Aramwift P., Kwon G.S. Nanotechnology in drug delivery. (Springer, 2008).

4. Mandal D., Bolander M., Mukhopadhyay D., Sarkar G., Mukherjee P. The use of microorganisms for the formation of metal nanoparticles and their application. Appl. Microbiol. Biotechnol. 2006. 69(5): 485. https://doi.org/10.1007/s00253-005-0179-3  

5. Kathiresan K., Manivannan S., Nabeel M., Dhivya B. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloid. Surf. B. 2009. 71(1): 133. https://doi.org/10.1016/j.colsurfb.2009.01.016  

6. Estrela V.R., Borodinova T.I., Jurkova I.N. The extracellular biomineralization and the synthesis of nano- and micro-crystallites of gold and platinum in aqueous solutions of polysaccharides. Colloid-chemical basis of nanoscience. Ed. A.P. Shpak, Z.R. Ullberg. (Kiev: Academperiodika, 2005). [in Russian].

7. Tazhibaeva S.M., Musabekov K.B., Orazymbetov A.B., Zhubanov A.A. Surface properties of yeast cells. Colloid zhurnal. 2003. 65(1): 132. [in Russian].

8. Ullberg Z.R., Vashchenko A.A. Biocolloidal chemistry bioflotatione extract and colloidal gold nanoparticles from solutions and dispersions of mineral. Nanosystems, nanomaterials, nanotechnology. 2008. 6(2): 331. [in Ukrainian].

9. Sanagursky D.I. Objects of biophysics. (Lviv National University: Publishing center of Franko, 2008). [in Ukrainian].

10. Ullberg Z.R., Gruzina T.G., Duhin A.S. Colloidal biochemical mechanism of interaction of cells with micro and nanoparticles. Nanosystems, nanomaterials, nanotechnology. 2014. 12(3): 417. [in Russian].

11. Abrat O.B., Semchishin G.M., Lushchak V.I. Acid stress in the yeast Saccharomyces cerevisiae. Ukrainian Biochemical Journal. 2008. 80(6): 19. [in Ukrainian].

12. Goryachaya I.P., Zinchenko V.D., Buriak I.A. Stability of Saccharomyces cerevisiae yeast membranes to cold exposure under oxidative stress. Scientific Gazette. Series Natural Sciences. 2014. 26(3): 72. [in Russian].

13. Podolsky V.I., Voitenko E.J., Yakubenko L.N., Ullberg Z.R., Zdanowicz E.A., Yermakov V.N., Kirichenko N.I. Effect of weak pulsed electric field on the interaction of certain microorganisms with ions of silver and copper. Nanostructurnoye materialovedenie. 2010. (2): 64. [in Russian].

14. Prokopenko V.A., Kovzun I.G., Ullberg Z.R. The creative potential of scientific discovery. Visn. NAS Ukraine. 2014. (10): 52. [in Russian].

15. Alt V., Bechert Th., Steinrucke P., Wagener M., Seidel P., Dingeldein E., Domann E., Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004. 25(18): 4383. https://doi.org/10.1016/j.biomaterials.2003.10.078

16. Shionoiri N., Sato T., Fujimori Y., Nakayama T., Nemoto M., Matsunaga T., Tanaka T. Investigation of the antiviral properties of copper iodide nanoparticles against feline calicivirus. Journal of Bioscience and Bioengineering. 2012. 113(5): 580.  https://doi.org/10.1016/j.jbiosc.2011.12.006

17. Fujimori Y., Sato T., Hayata T., Nagao T., Nakayama M., Nakayama T., Sugamata R., Suzuki K. Novel antiviral characteristics of nanosized copper(I) iodide particles showing inactivation activity against 2009 pandemic H1N1 influenza virus. Appl. Env. Microbiol. 2012. 78(4): 951. https://doi.org/10.1128/AEM.06284-11

18. Garkusha O.M., Makhno S.M., Bagatskaya A.N., Gorbyk P.P. Thermal effects during the immersion wetting of silica gel and the yeast cells during the formation of aqueous suspensions. Koloidn. zhurn. 2010. 72(3): 323. [in Russian].

19. Calabrese E.J. Hormesis: principles and applications for pharmacology and toxicology. Am. J. Pharm. Toxicol. 2008. 3(1): 56. https://doi.org/10.3844/ajptsp.2008.59.71

20. Erkina T.Y., Lavrova M.V., Erkin A.M. Alternative ways of regulation of stress in the cells of Saccharomyces cerevisiae: transcriptional activators and MSN2 MSN4. Tsitologiya. 2009. 51(3): 271. [in Russian].  https://doi.org/10.1134/s1990519x09020035

21. Mathers J., Fraser J.A, McMahon M., Saunders R.D., Hayes J.D., McLellan L.I. Antioxidant and cytoprotective responses to redox stress. Biochem. Soc. Symp. 2004. 71(1): 157.  https://doi.org/10.1042/bss0710157 




DOI: https://doi.org/10.15407/hftp07.03.354

Copyright (©) 2016 G. M. Bagatska, R. V. Mazurenko, S. M. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.