Synthesis of Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> films with nasicon structure by «tаpe casting» method

Authors

  • B. O. Linova Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine
  • S. D. Kobylianska Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine
  • A. G. Bilous Vernadsky Institute of General and Inorganic Chemistry of National Academy of Sciences of Ukraine
  • A. V. Ragulya Frantsevich Institute for Problems in Materials Science of National Academy of Sciences of Ukraine
  • I. O. Dulina Frantsevich Institute for Problems in Materials Science of National Academy of Sciences of Ukraine

DOI:

https://doi.org/10.15407/hftp07.04.389

Keywords:

lithium aluminum titanium phosphate Li1.3Al0.3Ti1.7(PO4)3, NASICON structure, “tape casting” method, thick films, isostatic lamination, sol-gel method

Abstract

For the first time lithium aluminum titanium phosphate Li1.3 Al0.3Ti1.7 (PO4)3 thick films with NASICON structure have beenobtained by “tape casting” method . A sol-gel method was used to synthesize nanopowder Li1.3 Al0.3Ti1.7(PO4)3. Film-forming solution was obtained based o n previously synthesized nanoparticles and mixed with organic reagents. Films were deposited on the substrate of ?-Al2 O3 and were exposed to isostatic lamination. Sintering thick films were carried out at temperature of 1000°C. Different regimes of heat treatment were studied to determine the optimal conditions of heat treatment . Investigation of structural and morphological characteristics has shown that the maximum dense film is achieved at low heating rate (20°C/h) and by the action of isostatic lamination . Reducing of porosity positively affects electrical properties. Films after isostatic lamination are characterized by high values of Li-ion conductivity. Thus, the laminated film after low rate heating, which has the lowest porosity of 17%, shows the highest values Li-ion conductivity – 5.6?10–6 S/сm. 

References

1. Tarascon J.-M., Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001. 414: 359. https://doi.org/10.1038/35104644 

2. Melot B.C., Tarascon J.-M. Design and preparation of materials for advanced electrochemical storage Acc. Chem. Res. 2013. 46(5): 1226. https://doi.org/10.1021/ar300088q 

3. Visco S.J., Nimon E., De Jonghe L.C. Secondary batteries: metal-air systems lithium-air. In: Encyclopedia of electrochemical power sources. (Amsterdam: Elsevier, 2009). https://doi.org/10.1016/B978-044452745-5.00184-2 

4. Ji D.X., Tae L.K., Nazar L.F. Challenges of lithium-sulfur and lithium-air cells:old chemistry, new advances. In: Scalable energy storage: beyond lithiumion. (San Jose, USA: Almaden Institute, 2009).

5. Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.-M. LiO2 and LiS batteries with high energy storage. Nat. Mater. 2012. 11(1): 19. https://doi.org/10.1038/nmat3191 

6. Cho K.I., Lee S.H., Cho K.H., Dong W.S., Yang K.S. Li2O-B2O3-P2O5 solid electrolyte for thin film batteries. J. Power Sources. 2006. 163(1): 223. https://doi.org/10.1016/j.jpowsour.2006.02.011 

7. Abdel-Baki M., Salem A.M., Abdel-Wahab F.A., El-Diasty F. Bond character, optical properties and ionic conductivity of Li2O/B2O3/SiO2/Al2O3 glass: Effect of structural substitution of Li2O for LiCl. J. Non-Cryst. Solids. 2008. 354(40–41): 4527. https://doi.org/10.1016/j.jnoncrysol.2008.07.003 

8. Money B.K., Hariharan K. Relation between structural and conductivity relaxation in PEO and PEO based electrolytes. Solid State Ionics. 2008. 179(27–32): 1273. https://doi.org/10.1016/j.ssi.2007.12.068 

9. Knauth P. Inorganic Solid Li Ion Conductors: An Overview. Solid State Ionics. 2009. 180(14–16): 911. https://doi.org/10.1016/j.ssi.2009.03.022 

10. Takada K., Inada T., Kajiyama A., Hideki S., Shigeo K., Mamoru W., Masahiro M., Ryoji K. Solid-state lithium battery with graphite anode. Solid State Ionics. 2003. 158(3–4): 269. https://doi.org/10.1016/S0167-2738(02)00823-8 

11. Kotobuki M., Isshiki Y., Munakata H., Kanamura K. All-solid-state lithium battery with a three-dimensionally ordered Li1.5Al0.5Ti1.5(PO4)3 electrode. Electrochim. Acta. 2010. 55(22): 68. https://doi.org/10.1016/j.electacta.2010.05.074 

12. Arbi K., Mandal S., Rojo J.M., Sanz J. Dependence of ionic conductivity oncomposition of fast ionic conductors Li1+xTi2−xAlx(PO4)3, 0≤x≤0.7. A parallel NMR and electric impedance study. Chem. Mater. 2002. 14(3): 1091. https://doi.org/10.1021/cm010528i 

13. Aono H., Sugimoto E., Sadaoka Y., Imanaka N., Adachi G. The electrical properties of ceramic electrolytes for Li1+xMxTi2-x(PO4)3 + yLi2O, M = Ge, Sn, Hf and Zr systems. J. Electrochem. Soc. 1993. 140(7): 1827. https://doi.org/10.1149/1.2220723 

14. Adachi G., Imanaka N., Aono H. Fast Li+ conducting ceramic electrolytes. Adv. Mater. 1996. 8 (2): 127. https://doi.org/10.1002/adma.19960080205 

15. J. Fu. Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5. Solid State Ionics. 1997. 96(3–4): 195. https://doi.org/10.1016/S0167-2738(97)00018-0 

16. Arbi K., Rojo J.M., Sanz J. Lithium mobility in titanium based Nasicon Li1+xTi2−xAlx(PO4)3 and LiTi2−x Zrx(PO4)3 materials followed by NMR and impedance spectroscopy. J. Eur. Ceram. Soc. 2007. 27(13–15): 4215. https://doi.org/10.1016/j.jeurceramsoc.2007.02.118 

17. Dominik Ju., Henryk R., Leszek G. Cold chemical lamination of ceramic green tapes. J. Eur. Ceram. Soc. 2009. 29(4): 703 – 709. https://doi.org/10.1016/j.jeurceramsoc.2008.07.035 

18. Park H.-Gu, Moon H., Park S.-Ch., Lee J.-J., Yoon D., Hyun S.-H., Kim D.-H. Performance improvement of anode-supported electrolytes for planar solid oxide fuel cells via a tape-casting/lamination/co-firing technique. J. Power Sources. 2010. 195(9): 2463. https://doi.org/10.1016/j.jpowsour.2009.11.086 

19. Dominik Ju., Leszek G. Low pressure thermocompressive lamination. J. Eur. Ceram. Soc. 2012. 32(10): 2431. https://doi.org/10.1016/j.jeurceramsoc.2011.12.033 

20. Mistler R.E., Twiname E.R. Tape Casting: Theory and Practice. (Wiley, 2000).

21. Hsiue G.H., Chu L.W., Lin I.N. Optimized phosphate ester structure for the dispersion of nano-sized barium titanate in proper non-aqueous media. Colloids Surf., A. 2007. 294(1–3): 212 – 220. https://doi.org/10.1016/j.colsurfa.2006.08.013 

22. Chen J., Udayakumar K.R., Brooks K.G., Cross L.E. Rapid thermal annealing of sol-gel derived lead zirconate titanate thin films. J. Appl. Phys. 1992. 71(9): 4465. https://doi.org/10.1063/1.350789 

23. Kang S.J., Park Y.J., Sung J., Jo P.S., Park Ch., Kim K.J., Cho B.O. Spin cast ferroelectric beta poly(vinylidene fluoride) thin films via rapid thermal annealing. Appl. Phys. Lett. 2008. 92(1): 5433. https://doi.org/10.1063/1.2830701 

24. Doreau F., Tari G., Guedes M., Chartier T., Pagnoux C. Mechanical and lamination properties of alumina green tapes obtained by aqueous tape-casting. J. Eur. Ceram. Soc. 1999. 19(16): 2867. https://doi.org/10.1016/S0955-2219(99)00052-7 

Downloads

How to Cite

LINOVA, B. O.; KOBYLIANSKA, S. D.; BILOUS, A. G.; RAGULYA, A. V.; DULINA, I. O. Synthesis of Li<sub>1.3</sub>Al<sub>0.3</sub>Ti<sub>1.7</sub>(PO<sub>4</sub>)<sub>3</sub> films with nasicon structure by «tаpe casting» method. Chemistry, Physics and Technology of Surface, [S. l.], v. 7, n. 4, p. 389–394, 2016. DOI: 10.15407/hftp07.04.389. Disponível em: https://cpts.com.ua/index.php/cpts/article/view/398. Acesso em: 14 jul. 2025.