One-pot synthesis of ?-valerolactone from tetrahydrofurfuryl alcohol and ?-valerolactone amidation over Сu/ZnO-Al<sub>2</sub>O<sub>3</sub> catalyst
DOI:
https://doi.org/10.15407/hftp07.04.395Keywords:
catalytic dehydrogenation, tetrahydrofurfuryl alcohol, δ-valerolactone, δ-valerolactam, Cu-catalystAbstract
It has been found that tetrahydrofurfuryl alcohol transforms into ?-valerolactone over Сu/ZnO-Al2O3 catalyst at 270–280°С. ?-Valerolactone can be used for obtaining biodegradable polyesters and copolymers. Proposed Сu/ZnAl-1 catalyst containing 40 wt. % of CuO provides 40–50% alcohol conversion with 80–85% lactone selectivity under hydrogen flow at 0.1 MPa. The reaction pathway from tetrahydrofurfurol to ?-valerolactone has been proposed: it is speculated that alcohol is initially dehydrogenated into tetrahydrofurfural, which rearranges to lactone. Vapor-phase amidation of ?-valerolactone with ammonia into ?-valerolactam, as raw material for obtaining polyamide nylon-5, was also investigated. It has been shown that among studied Cu-containing oxides Сu/ZnAl-1 catalyst provides higher 80 % ?-valerolactam selectivity at 90% lactone conversion at 280°С under ammonia, hydrogen and steam flow with strictly certain molar ratio. The process proceeds via disclosure of lactone cycle with intermediate 5-hydroxypentamide formation.References
1. Bozell J.J., Petersen G.R. Technology Development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy's «Top 10» revisited. Green Chem. 2010. 12(4): 539. https://doi.org/10.1039/b922014c
2. Corma A., Iborra S., Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007. 107(6): 2411. https://doi.org/10.1021/cr050989d
3. Mao L., Zhang L., Gao N., Li A. FeCl3 and acetic acid co-catalysed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour. Technol. 2012. 123: 324. https://doi.org/10.1016/j.biortech.2012.07.058
4. Chheda J.N., Huber G.W., Dumesic J.A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem. Int. Edit. 2007. 46(38): 7164. https://doi.org/10.1002/anie.200604274
5. Koso S., Ueda N., Shinmi Y., Okumura K., Kizuka T., Tomishige K. Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2. J. Catal. 2009. 267(1): 89. https://doi.org/10.1016/j.jcat.2009.07.010
6. Koso S., Furikado I., Shimao A., Miyazawa T., Kunimori K., Tomishige K. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol. Chem. Commun. 2009. 15: 2035. https://doi.org/10.1039/b822942b
7. Solaro R., Cantoni G., Chiellini E. Polymerisability of different lactones and methyl methacrylate in the presence of various organoaluminium catalysts. Eur. Polym. J. 1997. 33(2): 205. https://doi.org/10.1016/S0014-3057(96)00126-7
8. Lou X., Detrembleur C., Jérome R. Living cationic polymerization of δ-valerolactone and synthesis of high molecular weight homopolymer and asymmetric telechenic and block copolymer. Macromolecules. 2002. 35(4): 1190. https://doi.org/10.1021/ma0113677
9. Darensbourg D.J., Karroonnirum O., Wilson S.J. Ring-opening polymerization of cyclic esters and trimethylene carbonate catalyzed by aluminum half-salen complexes. Inorg. Chem. 2011. 50(14): 6775. https://doi.org/10.1021/ic2008057
10. Yang J., Jia L., Hao Q., Li Y., Li Q., Fang Q., Cao A. New biodegradable amphiphilic block copolymers of ε-caprolactone and δ-valerolactone catalysed by novel aluminum metal complexes. II. Micellization and solution to gel transition. Macromol. Biosci. 2005. 5(9): 896. https://doi.org/10.1002/mabi.200500096
11. Lee H., Zeng F., Dunne M., Allen C. Methoxy poly(ethylene glycol)-block-Poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005. 6(6): 3119. https://doi.org/10.1021/bm050451h
12. Zeng F., Lee H., Allen C. Epidermal growth factor-conjugated poly(ethylene glycol))-block- poly(δ-valerolactone) copolymer micelles for targeted delivery of chemotherapeutics. Bioconjugate Chem. 2006. 17(2): 399. https://doi.org/10.1021/bc050350g
13. Bagnall W.H., Goodings E.P., Wilson C.I. Reactions of furan compounds. XII. Elimination of the side chain of tetrahydrofurfuryl alcohol using nickel-copper catalysts. J. Am. Chem. Soc. 1951. 73(10): 4794. https://doi.org/10.1021/ja01154a094
14. Thomas H.P., Wilson C.L. Reactions of furan compounds. XV. Behavior of tetrahydrofurfuryl alcohol over iron-copper catalysts. J. Am. Chem. Soc. 1951. 73(10): 4803. https://doi.org/10.1021/ja01154a097
15. Zheng H.-Y., Zhu Y.-L., Teng B.-T., Bai Z.-Q., Zhang C.-H., Xiang H.-W., Li Y.-W. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J. Mol. Catal. A: 2006. 246(1): 18. https://doi.org/10.1016/j.molcata.2005.10.003
16. Whelan T. Polymer Technology Dictionary. (London: Chapman & Hall, 1994). https://doi.org/10.1007/978-94-011-1292-5
17. Patent UK 821982 A. Duxbury F.K., Reynolds R.J.W. Manufacture of amides. 1959.
18. Ono Y., Takeyama Y., Hatada K., Keii T. Conversion of δ-valerolactone into 2-piperidone over synthetic zeolites. Ind. Eng. Chem. Prod. Res. Develop. 1976. 15(3): 180. https://doi.org/10.1021/i360059a007
19. Patent FR 1506874(A). Kanegafuchi Boseki Kabushiki Kaisha. Procédé de fabrication d'epsilon-caprolactame. 1967.
20. Patent US 3888845. Fujita Y., Naruchi T., Yoshisato E. Process for producing epsilon-caprolactam. 1975.
21. Inshina E.I., Shistka D.V., Telbiz G.M., Brei V.V. Hammet acidity function for mixed ZrO2-SiO2 oxide at elevated temperatures. Chem. Phys. Technol. Surf. 2012. 3(4): 395.
22. Atake I., Nishida K., Li D., Shishido T., Oumi Y., Sano T., Takehira K. Catalytic behavior of ternary Cu/ZnO/Al2O3 systems prepared by homogeneous precipitation in water-gas shift reaction. J. Mol. Catal. A. 2007. 275(1–2): 130. https://doi.org/10.1016/j.molcata.2007.05.040
23. Sharanda M.E., Prudius S.V., Brei V.V. One-pot synthesis of ethylacetate from ethanol over Cu/ZnO-ZrO2-Al2O3 catalyst. Ukr. Khim. Zh. 2008. 74(12): 78. [in Russian].
24. Sato S., Igarashi J., Yamada Y. Stable vapor-phase conversion of tetrahydrofurfuryl alcohol into 3,4-2H-dihydropyran. Appl. Catal. A. 2013. 453: 213. https://doi.org/10.1016/j.apcata.2012.12.017
25. Gulkova D., Kraus M. Dehydrogenation of substituted alcohols to aldehydes on zinc oxide-chromium catalysts. Collec. Czech. Chem. Commun. 1992. 57: 2215. https://doi.org/10.1135/cccc19922215
26. Nenitescu C.D. Organic Chemistry. V. 2. (Moskow: IIL, 1963). [in Russian].
Downloads
How to Cite
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.