Хімія, фізика та технологія поверхні, 2010, 1 (3), 326-332.

Хімічний дизайн вуглецевого покриття на поверхні наночастинок Al2O3



L. F. Sharanda, I. V. Babich, Yu. V. Plyuto

Анотація


Розроблений новий метод хімічного дизайну вуглецевого покриття на поверхні наночастинок пірогенного Al2Oрозміром 8–10 нм. Вуглецеве покриття синтезували шляхом модифікування поверхні пірогенного оксиду алюмінію 4,4-метилендифенілдиізоціанатом та подальшим його піролізом при 700oC. З метою одержання зразків з більш високим вмістом вуглецю цикл "модифікування–піроліз" повторювали. Вищеописана процедура дозволила синтезувати зразки з вмістом вуглецю 7,6 та 14,5 % ваг. Дослідження синтезованих зразків методами раманівської та ІЧ-спектроскопії, TГ/ДTГ-ДTA, низькотемпературної адсорбції азоту та СЕM показало, що утворення суцільного вуглецевого покриття на поверхні пірогенного Al2O3 відбувається вже після проведення першого циклу "модифікування–піроліз". Повторення циклу "модифікування–піроліз" МДІ приводить до формування вуглецевого покриття з більш впорядкованою графітовою структурою.

Повний текст:

PDF (English)

Посилання


Menchavez R.L., Fuji M., Takahashi M. Electrically conductive dense and porous alumina with in-situ-synthesized nanoscale carbon networks // Adv. Mater. – 2008. – V. 20, N 12. – P. 2345–2351.

Pat. 4018943 United States, Method of forming a conducting material for a conducting device / K.J Youtsey et al. – Appl. No.: 05/226035; Filing: 14.02.1972; Publ.: 19.04.1977. – 8 p.

Pat. 5262198 United States, Method of producing a carbon coated ceramic membrane and associated product / P.K.T. Liu et al. – Appl. No.: 07/682181; Filing: 08.04.1991; Publ.: 16.11.1993. – 11 p.

Katumba G., Lu J., Olumekor L. et al. Low cost selective solar absorber coatings: characteristics of carbon-in-silica synthesized with sol-gel technique // J. Sol-Gel Sci. Technol. – 2005. – V. 36, N 1. – P. 33–43.

Zhang T., Jacobs P.D., Haynes H.W. Laboratory evaluation of four coal liquefaction catalysts prepared from modified alumina supports // Catal. Today. – 1994. – V. 19, N 3. – P. 353–366.

Mann M., Shter G.E., Grader G.S. Preparation of carbon coated ceramic foams by pyrolysis of polyurethane // J. Mater. Sci. – 2006. – V. 41, N 18. – P. 6046–6055.

Leboda R., Charmas B., Marciniak M., Skubi­szewska-Zieba J. On the topography and morphology of carbon deposits prepared by pyrolysis of alcohol on the surface of silica gel // Mater. Chem. Phys. – 1999. – V. 58, N 2. – P. 146–155.

Boorman P.M., Chong K. Preparation of carbon-covered alumina using fluorohydrocarbons. A new acidic support material // Appl. Catal. A. – 1993. – V. 95, N 2. – P. 197–210.

Kammler H.K., Pratsinis S. Carbon-coated titania nanostructured particles: continuonus, one-step flame-synthesis // J. Mater. Res. – 2003. – V. 18, N 11. – P. 2670–2676.

Caraculacu A.A., Coseri S. Isocyanates in polyaddition processes. Structure and reaction mechanisms // Prog. Polym. Sci. – 2001. – V. 26, N 5. – P. 799–851.

Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers // Prog. Mater. Sci. – 2007. – V. 52, N 6. – P. 915–1015.

Dechant J. Ultrarotspektroskopische untersu­chungen an polymeren / Ed. R. Danz W. Kimmer, R. Schmolke. – Akademie-Verlag-Berlin, 1972. – 347 p.

Stankovich S., Piner R.D., Nguyen S.T., Ruoff R.S. Synthesis and exfoliation of isocyanate-treated grapheme oxide nanoplatelets // Carbon. – 2006. – V. 44. – P. 3342–3347.

Zhao C., Ji L., Liu H. et al. Functionalized carbon nanotubes containing isocyanate groups // J. Solid State Chem. – 2004. – V. 177, N 12. – P. 4394–4398.

Davydov A. Molecular spectroscopy of oxide catalyst surfaces / Ed. N.T. Sheppard. – John Wiley & Sons Ltd, England, 2003. – 684 p.

Gregg S.J., Sing K.S.W., Adsorption, surface area and porosity. – London, New York: Academic Press, 1967. – 303 p.

Robertson J. Amorphous carbon // Adv. Phys. – 1986. – V. 35, N 4. – P. 317–374.

Ferrari A.C., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev. B. – 2000. – V. 61, N 20. – P. 14095–14107.

Ferrari A.C. Raman spectroscopy of grapheme and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects // Solid State Commun. – 2007. – V. 143. – P. 47–57.

Theodoropoulou S., Papadimitriou D., Zoumpoulakis L., Simitzis J. Structural and optical characterization of pyrolytic carbon derived from novolac resin // Anal. Bioanal. Chem. – 2004. – V. 379, N 5–6. – P. 788–791.

Prawer S., Rozenblum I., Orwa J.O., Adler J. Identification of the point defects in diamond as measured by Raman spectroscopy: comparison between experiment and computation // Chem. Phys. Lett. – 2004. – V. 390, N 4–6. – P. 458–461.

Takahiro K., Ookawa R., Kawatsura K. et al. Improvement in surface roughness of nitrogen-implanted glassy carbon by hydrogen doping // Diamond Relat. Mater. – 2003. – V. 12, N 8. – P. 1362–1367.

Shen T.D., Ge W.Q., Wang K.Y. et al.. Structural disorder and phase transformation in graphite produced by ball milling // Nanostruct. Mater. – 1996. – V. 7, N 4. – P. 393–399.

Eklund P.C., Holden J.M., Jishi A. Vibrational modes of carbon nanotubes: spectroscopy and theory // Carbon – 1995. – V. 33. – P. 959–972.

Ros T.G., Dillen A.J., Geus J.W, Koningsberger D.Ch. Surface structure of untreated parallel and fishbone carbon nanofibres: an infrared study // Chem. Phys. Chem. – 2002. – V. 3, N 2. – P. 393–399.

Friedel R.A., Carlson G.L. Infrared spectra of ground graphite // J. Phys. Chem. – 1971. – V. 75, N 8. – P. 1149–1151.

Rodil S.E., Muhl S., Masa S., Ferrari A.C. Optical gap in carbon nitride films // Thin Solid Films. – 2003. – V. 433, N 1–2. – P. 119–125.

Rusop M., Omer A.M.M., Adhikari S. et al. Effect of annealing temperature on the optical, bonding, structural and electrical properties of nitrogenated amorphous carbon thin films grown by surface wave microwave plasma chemical vapor deposition // J. Mater. Sci. – 2006. – V. 41, N 2. – P. 537–547.

Vasilets V.N., Hirose A., Yang Q. et al. Characterization of doped diamond-like carbon films deposited by hot wire plasma sputtering of graphite // Appl. Phys. A. – 2004. – V. 79, N 8. – P. 2079–2084.

Yang L., May P.W, Vin L. et al. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution // J. Nanopart. Res. – 2007. – V. 9, N 6. – P. 1181–1185.




Copyright (©) 2010 L. F. Sharanda, I. V. Babich, Yu. V. Plyuto

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.