Хімія, фізика та технологія поверхні, 2020, 11 (2), 163-174.

Структурна характеризація складних адсорбентів в рамках теорії функціоналу густини та процедури самоузгодженої регуляризації



DOI: https://doi.org/10.15407/hftp11.02.163

V. M. Gun'ko

Анотація


Високодисперсні та пористі комплексні та гібридні матеріали і нанокомпозити, які характеризуються наявністю кількох фаз, неоднорідною морфологією частинок та складною топологією пор різної форми, широко використовують в різних технологіях в індустрії та медицині. Точне визначення їхніх текстурних характеристик є важливим з практичної точки зору, оскільки ці характеристики відіграють важливу роль практично у всіх застосуваннях цих матеріалів. Мета роботи: для вирішення цієї задачі було розроблено процедуру самоузгодженої регуляризації (SCR), що використовується для рішення інтегральних адсорбційних рівнянь, що описують адсорбцію у складних порах на основі моделі щілинних та циліндричних пор та проміжок між сферичними наночастинками, що утворюють випадкові агрегати (SCV модель), для двох- чи три-компонентних систем, що включають активоване вугілля, сажу, силікагель та нанокремнезем. Цей підхід було розроблено на основі методу теорії функціоналу густини (DFT). Розподіли пор за розмірами (PSD), розраховані методом DFT SCV/SCR, було порівняно з PSD, розрахованими з використанням модифікованого рівняння БЕТ та рівняння Кельвіна (MND метод) та SCV/SCR процедури, який було розроблено раніше. Метод DFT SCV/SCR працює краще, оскільки він дає меншу похибку моделі для усіх бінарних та потрійних систем та краще відповідає PSD компонентів, що входять до композитів. Метод DFT SCV/SCR може бути використано для вивчення текстурних (структурно-адсорбційних) характеристик різних комплексних та гібридних матеріалів. Треба зазначити, що PSD таких складних адсорбентів важко розраховувати з використанням стандартних наближень, які використовують у програмному забезпеченні різних фірм, які виробляють адсорбційне обладнання, оскільки є обмеження на типи матеріалів (зазвичай в одній моделі - один) та відсутність SCR процедури.


Ключові слова


комплексні адсорбенти; розподіл пор за розмірами; текстурні характеристики; бінарні суміші; потрійні суміші; теорії функціоналу густини з самоузгодженою регуляризацією

Повний текст:

PDF (English)

Посилання


1. Tarazona P., Marconi U.M.B., Evans R. Phase equilibria of fluid interfaces and confined fluids - non-local versus local density functionals. Mol. Phys. 1987. 60(3): 573. https://doi.org/10.1080/00268978700100381

2. Lastoskie C., Gubbins K.E., Quirke N. Pore size distribution analysis of microporous carbons: a density functional theory approach. J. Phys. Chem. 1993. 97(18): 4786. https://doi.org/10.1021/j100120a035

3. Olivier J.P. Modeling physical adsorption on porous and nonporous solids using density functional theory. J. Porous Mater. 1995. 2: 9. https://doi.org/10.1007/BF00486565

4. Olivier J.P. Improving the models used for calculating the size distribution of micropore volume of activated carbons from adsorption data. Carbon. 1998. 36(10): 1469. https://doi.org/10.1016/S0008-6223(98)00139-0

5. Olivier J.P., Occelli M.L. Surface area and microporosity of a pillared interlayered clay (pilc) from a hybrid density functional theory (DFT) method. J. Phys. Chem. B. 2001. 105(3): 5358. https://doi.org/10.1021/jp011431m

6. Occelli M.L., Olivier J.P., Perdigon-Melon J.A., Auroux A. Surface area, pore volume distribution, and acidity in mesoporous expanded clay catalysts from hybrid density functional theory (DFT) and adsorption microcalorimetry methods. Langmuir. 2002. 18(25): 9816. https://doi.org/10.1021/la020567o

7. Occelli M.L., Olivier J.P., Petre A., Auroux A. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (fccs) from nonlocal density functional theoretical models of adsorption and from microcalorimetry methods. J. Phys. Chem. B. 2003. 107(17): 4128. https://doi.org/10.1021/jp022242m

8. Occelli M.L., Olivier J.P., Auroux A., Kalwei M., Eckert H. Basicity and porosity of a calcined hydrotalcite-type material from nitrogen porosimetry and adsorption microcalorimetry methods. Chem. Mater. 2003. 15(22): 4231. https://doi.org/10.1021/cm030105b

9. Jagiello J., Olivier J.P. A simple two-dimensional NLDFT model of gas adsorption in finite carbon pores. Application to pore structure analysis. J. Phys. Chem. C. 2009. 113(45): 19382. https://doi.org/10.1021/jp9082147

10. Maddox M.W., Olivier J.P., Gubbins K.E. Characterization of MCM-41 using molecular simulation. Heterogeneity effects. Langmuir. 1997. 13(6): 1737. https://doi.org/10.1021/la961068o

11. Jaroniec M., Kruk M., Olivier J.P., Koch S. A new method for the accurate pore size analysis of MCM-41 and other silica based mesoporous materials. In: Proceedings of the Fifth International Symposium on the Characterization of Porous Solids, COPS-V. V. 128. (Studies in Surface Science and Catalysis, Elsevier, 2000). https://doi.org/10.1016/S0167-2991(00)80010-5

12. Thommes M. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 2010. 82(7): 1059. https://doi.org/10.1002/cite.201000064

13. Gor G.Y., Thommes M., Cychosz K.A, Neimark A.V. Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption. Carbon. 2012. 50(4): 1583. https://doi.org/10.1016/j.carbon.2011.11.037

14. Neimark A.V., Lin Y., Ravikovitch P.I., Thommes M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon. 2009. 47(7): 1617. https://doi.org/10.1016/j.carbon.2009.01.050

15. Ravikovitch P.I., Neimark A.V. Characterization of nanoporous materials from adsorption and desorption isotherms. Colloid Surf. A. 2001. 187-188: 11. https://doi.org/10.1016/S0927-7757(01)00614-8

16. Ravikovitch P.I., Neimark A.V. Density functional theory model of adsorption on amorphous and microporous silica materials. Langmuir. 2006. 22(26): 11171. https://doi.org/10.1021/la0616146

17. Landers J., Gor G.Y., Neimark. A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A. 2013. 437: 3. https://doi.org/10.1016/j.colsurfa.2013.01.007

18. Barrett E.P., Yoyner L.G., Halenda P.P. The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951. 73(1): 373. https://doi.org/10.1021/ja01145a126

19. Marsh H., Rodríguez-Reinoso F. Activated Carbon. (London: Elsevier, 2006). https://doi.org/10.1016/B978-008044463-5/50016-9

20. Ustinov E.A., Do D.D., Fenelonov V.B. Modeling of heterogeneous surfaces and characterization of porous materials by extending density functional theory for the case of amorphous solids. Appl. Surf. Sci. 2007. 253(13): 5610. https://doi.org/10.1016/j.apsusc.2006.12.073

21. Ustinov E.A., Do D.D., Fenelonov V.B. Pore size distribution analysis of activated carbons. Application of density functional theory using nongraphitized carbon black as a reference system. Carbon. 2006. 44(4): 653. https://doi.org/10.1016/j.carbon.2005.09.023

22. Nguyen T.X., Bhatia S.K. Characterization of accessible and inaccessible pores in microporous carbons by a combination of adsorption and small angle neutron scattering. Carbon. 2012. 50(8): 3045. https://doi.org/10.1016/j.carbon.2012.02.091

23. Davies G.M., Seaton N.A. Characterization of the internal structure of microporous carbons using pore size. Carbon. 1998. 36(10): 1473. https://doi.org/10.1016/S0008-6223(98)00140-7

24. Cimino R., Cychosz K.A., Thommes M., Neimark A.V. Experimental and theoretical studies of scanning adsorption-desorption isotherms. Colloids Surf. A. 2013. 437: 76. https://doi.org/10.1016/j.colsurfa.2013.03.025

25. Rouquerol J., Baron G.V., Denoyel R., Giesche H., Groen J., Klobes P., Levitz P., Neimark A.V., Rigby S., Skudas R., Sing K., Thommes M., Unger K. The characterization of macroporous solids: An overview of the methodology. Microporous Mesoporous Mater. 2012. 154: 2. https://doi.org/10.1016/j.micromeso.2011.09.031

26. Ustinov E.A., Staudt R., Do D.D., Herbst A., Harting P. Multicomponent adsorption on activated carbons under supercritical conditions. J. Colloid Interface Sci. 2004. 275(2): 376. https://doi.org/10.1016/j.jcis.2004.02.071

27. Shahrak M.N., Shahsavand A., Okhovat A. Robust PSD determination of micro and meso-pore adsorbents via novel modified U curve method. Chem. Eng. Res. Des. 2013. 91(1): 51. https://doi.org/10.1016/j.cherd.2012.07.003

28. Shahsav A., Shahrak M.N. Direct pore size distribution estimation of heterogeneous nano-structured solid adsorbents from condensation data. Condensation with no prior adsorption. Colloids Surf. A. 2011. 378(1-3): 1. https://doi.org/10.1016/j.colsurfa.2010.10.001

29. Meng X., Foston M., Leisen J., DeMartini J., Wyman C.E., Ragauskas A.J. Determination of porosity of lignocellulosic biomass before and after pretreatment by using Simons' stain and NMR techniques. Bioresour. Technol. 2013. 144: 367. https://doi.org/10.1016/j.biortech.2013.06.091

30. Ghashghaee M., Karimzadeh R. Evolutionary model for computation of pore-size distribution in microporous solids of cylindrical pore structure. Microporous Mesoporous Mater. 2011. 138(1-3): 22. https://doi.org/10.1016/j.micromeso.2010.09.035

31. KuilaU., Prasad M. Specific surface area and pore-size distribution in clays and shales. Geophys. Prospect. 2013. 61(2): 341. https://doi.org/10.1111/1365-2478.12028

32. Jorge M., Seaton N.A. Predicting adsorption of water/organic mixtures using molecular simulation. AIChE J. 2003. 49(8): 2059. https://doi.org/10.1002/aic.690490815

33. Gusev Yu., O'Brien J.A., Seaton N.A. A self-consistent method for characterization of activated carbons using supercritical adsorption and grand canonical Monte Carlo simulations. Langmuir. 1997. 13(10): 2815. https://doi.org/10.1021/la960421n

34. Thomson K.T., Gubbins K.E. Modeling structural morphology of microporous carbons by reverse Monte Carlo. Langmuir. 2000. 16(13): 5761. https://doi.org/10.1021/la991581c

35. Gun'ko V.M., Leboda R., Turov V.V., Charmas B., Skubiszewska-Zięba J. Structural and energetic heterogeneities of hybrid carbon-mineral adsorbents. Appl. Surf. Sci. 2002. 191(1-4): 286. https://doi.org/10.1016/S0169-4332(02)00220-9

36. Gun'ko V.M., Turov V.V., Leboda R. Structure-adsorption characteristics of carbon-oxide materials. Theor. Exp. Chem. 2002. 38(4): 199. https://doi.org/10.1023/A:1020586713911

37. Gun'ko V.M., Leboda R., Skubiszewska-Zięba J. Heating effects on morphological and textural characteristics of individual and composite nanooxides. Adsorption. 2009. 15(2): 89. https://doi.org/10.1007/s10450-009-9160-2

38. Gun'ko V.M., Zarko V.I., Turov V.V., Oranska O.I., Goncharuk E.V., Nychiporuk Y.M., Pakhlov E.M., Yurchenko G.R., Leboda R., Skubiszewska-Zięba J., Osovskii V.D., Ptushinskii Y.G., Derzhypolskyi A.G., Melenevsky D.A., Blitz J.P. Morphological and structural features of individual and composite nanooxides with alumina, silica, and titania in powders and aqueous suspensions. Powder Technol. 2009. 195(3): 245. https://doi.org/10.1016/j.powtec.2009.06.005

39. Gun'ko V.M., Meikle S.T., Kozynchenko O.P., Tennison S.R., Ehrburger-Dolle F., Morfin I., Mikhalovsky S.V. Comparative characterization of carbon and polymer adsorbents by SAXS and nitrogen adsorption methods. J. Phys. Chem. C. 2011. 115(21): 10727. https://doi.org/10.1021/jp201835r

40. Gun'ko V.M., ZaulychnyyYa.V., Ilkiv B.I., Zarko V.I., Nychiporuk Yu.M., Ptushinskii Yu.G., Pakhlov E.M., Leboda R., Skubiszewska-Zięba J. Textural and electronic characteristics of mechanochemically activated composites with nanosilica and activated carbon. Appl. Surf. Sci. 2011. 258(3): 1115. https://doi.org/10.1016/j.apsusc.2011.09.047

41. Gun'ko V.M., Kozynchenko O.P., Tennison S.R., Leboda R., Skubiszewska-Zięba J., Mikhalovsky S.V. Comparative study of nanopores in activated carbons by HRTEM and adsorption methods. Carbon. 2012. 50(9): 3146. https://doi.org/10.1016/j.carbon.2011.10.009

42. Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202

43. Gun'ko V.M. Composite materials: textural characteristics. Appl. Surf. Sci.2014. 307: 444. https://doi.org/10.1016/j.apsusc.2014.04.055

44. Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317

45. Gun'ko V.M. Theoretical analysis of adsorption of various compounds onto hydrophilic and hydrophobic silicas compared to activated carbons. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 340. https://doi.org/10.15407/hftp10.04.340

46. Nguyen C., Do D.D. A new method for the characterization of porous materials. Langmuir. 1999. 15(10): 3608. https://doi.org/10.1021/la981140d

47. Nguyen C., Do D.D. Effects of probing vapors and temperature on the characterization of micro-mesopore size distribution of carbonaceous materials. Langmuir. 2000. 16(18): 7218. https://doi.org/10.1021/la991596a

48. Gun'ko V.M., Do D.D. Characterization of pore structure of carbon adsorbents using regularization procedure. Colloids Surf. A. 2001. 193(1-3): 71. https://doi.org/10.1016/S0927-7757(01)00685-9

49. Sternik D., Galaburda M., Bogatyrov V.M., Gun'ko V.M. Influence of the synthesis method on the structural characteristics of novel hybrid adsorbents based on bentonite. J. Colloid Interface Sci. 2019. 3(1): 18. https://doi.org/10.3390/colloids3010018

50. Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005

51. Protsak I., Gun'ko V.M., Henderson I.M., Pakhlov E.M., Sternik D., Le Z. Nanostructured amorphous silicas hydrophobized by various pathways. ACS Omega. 2019. 4(9): 13863. https://doi.org/10.1021/acsomega.9b01508

52. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938. 60(2): 309. https://doi.org/10.1021/ja01269a023

53. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. Second Ed. (London: Academic Press, 1982).

54. Ravikovitch P.I., Haller G.L., Neimark A.V. Density functional theory model for calculating pore size distributions. Pore structure of nanoporous catalysts. Adv. Colloid Interface Sci. 1998. 76-77: 203. https://doi.org/10.1016/S0001-8686(98)00047-5

55. Do D.D., Nguyen C., Do H.D. Characterization of micro-mesoporous carbon media. Colloids Surf. A. 2001. 187-188: 51. https://doi.org/10.1016/S0927-7757(01)00621-5

56. Gun'ko V.M., Turov V.V., Leboda R., Zarko V.I., Skubiszewska-Zięba J., Charmas B. Adsorption, NMR and thermally stimulated depolarization current methods for comparative analysis of heterogeneous solid and soft materials. Langmuir. 2007. 23(6): 3184. https://doi.org/10.1021/la062648g

57. Platzer B., Maurer G. Application of a generalized Bender equation of state to the description of vapour-liquid in binary systems. Fluid Phase Equilib. 1993. 84: 79. https://doi.org/10.1016/0378-3812(93)85118-6

58. Provencher S.W. A constrained regularization method for inverting data represented by linear algebraic or integral equations. Comput. Phys. Commun. 1982. 27(3): 213. https://doi.org/10.1016/0010-4655(82)90173-4

59. Gun'ko V.M., Mikhalovsky S.V. Evaluation of slitlike porosity of carbon adsorbents. Carbon. 2004. 42(4): 843. https://doi.org/10.1016/j.carbon.2004.01.059




DOI: https://doi.org/10.15407/hftp11.02.163

Copyright (©) 2020 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.