Ефекти обмеженого простору для різних рідин, що взаємодіють з пірогенними нанооксидами та пористими кремнеземами
DOI: https://doi.org/10.15407/hftp13.01.047
Анотація
Міжфазні явища для сильно та слабко зв’язаних рідких адсорбатів, локалізованих в порах пористих або високодисперсних адсорбентів, сильно залежать від ефектів обмеженого простору. Ці ефекти, а також температурна поведінка рідких адсорбатів, розташованих в порах, залежать від багатьох чинників, як розміри пор та адсорбованих молекул, текстурна нестабільність адсорбентів (наприклад, ущільнення пірогенних оксидів під дією рідких адсорбатів, особливо води, або через механохімічну активацію) тощо. Метою даного дослідження є аналіз особливостей взаємодії пірогенних оксидів (діоксид кремнію, оксид алюмінію, оксид алюмінію/кремнезем/діоксид титану) з полярним (вода, диметилсульфоксид), слабкополярними (хлороформ, ароматичні бензол та толуол) і неполярними (н-декан) рідкими адсорбатами в залежності від морфологічних і текстурних характеристик адсорбентів та температури. Ці ефекти, а також пов'язані явища, є важливими, оскільки вони можуть по-різному впливати на ефективність практичних застосувань адсорбентів при різних умовах (температура, тиск, концентрація) залежно від характеристик адсорбентів та адсорбатів (рідин/розчинників та розчинених сполук).
Ключові слова
Посилання
Somasundaran P. Encyclopedia of Surface and Colloid Science. Third Edition. (Boca Raton: CRC Press, 2015). https://doi.org/10.1081/E-ESCS3
Yang R.T. Adsorbents: Fundamentals and Applications. (New York: Wiley, 2003). https://doi.org/10.1002/047144409X
Adamson A.W., Gast A.P. Physical Chemistry of Surface. 6th edition. (New York: Wiley, 1997).
Slejko F.L. Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application. (New York: Marcel Dekker Inc., 1985).
Birdi K.S. Handbook of Surface and Colloid Chemistry. Third edition. (Boca Raton: CRC Press, 2009). https://doi.org/10.1201/9781420007206
Ullmann's Encyclopedia of Industrial Chemistry. (Weinheim: Wiley-VCH, 2008).
Basic Characteristics of AEROSIL® Fumed Silica. Technical Bulletin Fine Particles. N 11. (Hanau: Evonik Industries AG, 2006).
Lu K. Nanoparticulate Materials. Synthesis, Characterization, and Processing. (Hoboken, New Jersey: John Wiley & Sons, Inc., 2013).
Moreno-Piraján J.C., Giraldo-Gutierrez L., Gómez-Granados F. Porous Materials Theory and Its Application for Environmental Remediation. (Cham: Springer Nature, 2021). https://doi.org/10.1007/978-3-030-65991-2
Rousseau R.W. Handbook of Separation Process Technology. (New York: John Wiley & Sons, 1987).
Schweitzer P.A. Handbook of Separation Techniques for Chemical Engineers. 2nd ed. (New York: McGraw-Hill Inc., 1988).
Iler R.K. The Chemistry of Silica. (Chichester: Wiley, 1979).
Legrand A.P. The Surface Properties of Silicas. (New York: Wiley, 1998).
Bergna H.E., Roberts W.O. Colloidal Silica: Fundamentals and Applications. (Boca Raton: CRC Press, 2006). https://doi.org/10.1201/9781420028706
Tapia O., Bertrán J. Solvent Effects and Chemical Reactivity. (New York: Kluwer Academic Publishers, 2000).
Henderson M.A. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 2002. 46(1): 1. https://doi.org/10.1016/S0167-5729(01)00020-6
Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
Auroux A. Microcalorimetry methods to study the acidity and reactivity of zeolites, pillared clays and mesoporous materials. Top. Catal. 2002. 19(3): 205.
Campbell C.T., Sellers J.R.V. Enthalpies and entropies of adsorption on well-defined oxide surfaces: Experimental measurements. Chem. Rev. 2013. 113(6): 4106. https://doi.org/10.1021/cr300329s
Eder F., Lercher J.A. On the role of the pore size and tortuosity for sorption of alkanes in molecular sieves. J. Phys. Chem. B. 1997. 101(8): 1273. https://doi.org/10.1021/jp961816i
Gounder R., Iglesia E. The catalytic diversity of zeolites: Confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 2013. 49(34): 3491. https://doi.org/10.1039/c3cc40731d
Chorkendorff I., Niemantsverdriet J.W. Concepts of Modern Catalysis and Kinetics. (Weinheim: John Wiley & Sons, 2006).
Dauenhauer P.J., Abdelrahman O.A. A universal descriptor for the entropy of adsorbed molecules in confined spaces. ACS Cent. Sci. 2018. 4(9): 1235. https://doi.org/10.1021/acscentsci.8b00419
Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2nd ed. (London: Academic Press, 1982).
Wypych G. Handbook of Solvents. (Toronto: ChemTec Publishing, 2001).
Kammerhofer J. Capillary Wetting of Heterogeneous Powders. 1st edn. (Göttingen: Cuvillier Verlag, 2019).
Gun'ko V.M., Turov V.V. Nuclear Magnetic Resonance Studies of Interfacial Phenomena. (Boca Raton: CRC Press, 2013). https://doi.org/10.1201/b14202
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pahklov E.M., Skubiszewska-Zięba J., Blitz J.P. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Adv. Colloid Interface Sci. 2016. 235: 108. https://doi.org/10.1016/j.cis.2016.06.003
Brunelli A., Pojana G., Callegaro S., Marcomini A. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J. Nanopart. Res. 2013. 15(6): 1684. https://doi.org/10.1007/s11051-013-1684-4
Canesi L., Ciacci C., Vallotto D., Gallo G., Marcomini A., Pojana G. In vitro effects of suspensions of selected nanoparticles (C60 fullerene, TiO2, SiO2) on Mytilus hemocytes. Aquat. Toxicol. 2010. 96(2): 151. https://doi.org/10.1016/j.aquatox.2009.10.017
D'Agata A., Salvatore F., Dallas L.J., Fisher A.S., Maisano M., Readman J.W., Jha A.N. Enhanced toxicity of 'bulk' titanium dioxide compared to 'fresh' and 'aged' nano-TiO2 in marine mussels (Mytilus galloprovincialis). Nanotoxicology. 2014. 8(5): 549. https://doi.org/10.3109/17435390.2013.807446
Srikanth K., Mahajan A., Pereira E., Duarte A.C., Rao J.V. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells. J. Appl. Toxicol. 2015. 35(10): 1133. https://doi.org/10.1002/jat.3142
Gun'ko V.M., Turov V.V., Zarko V.I., Goncharuk O.V., Pakhlov E.M., Matkovsky O.K. Interfacial phenomena at a surface of individual and complex fumed nanooxides. Surface. 2019. 11(26): 3. https://doi.org/10.15407/Surface.2019.11.003
Gun'ko V.M. Interfacial phenomena: effects of confined space and structure of adsorbents on the behavior of polar and nonpolar adsorbates at low temperatures. Current Physical Chemistry. 2015. 5(2): 137. https://doi.org/10.2174/187794680502160111093413
Turov V.V., Gun'ko V.M., Pakhlov E.M., Krupska T.V., Tsapko M.D., Charmas B., Kartel M.T. Influence of hydrophobic nanosilica and hydrophobic medium on water bound in hydrophilic components of complex systems. Colloids Surf., A. 2018. 552: 39. https://doi.org/10.1016/j.colsurfa.2018.05.017
Gun'ko V.M., Pakhlov E.M., Goncharuk O.V., Andriyko L.S., Marynin A.I., Ukrainets A.I., Charmas B., Skubiszewska-Zięba J., Blitz J.P. Influence of hydrophobization of fumed oxides on interactions with polar and nonpolar adsorbates. Appl. Surf. Sci. 2017. 423: 855. https://doi.org/10.1016/j.apsusc.2017.06.207
Gun'ko V.M., Voronin E.F., Nosach L.V., Turov V.V., Wang Z., Vasilenko A.P., Leboda R., Skubiszewska-Zięba J., Janusz W., Mikhalovsky S.V. Structural, textural and adsorption characteristics of nanosilica mechanochemically activated in different media. J. Colloid Interface Sci. 2011. 355(2): 300. https://doi.org/10.1016/j.jcis.2010.12.008
Turov V.V., Gun'ko V.M., Zarko V.I., Goncharuk O.V., Krupska T.V., Turov A.V., Leboda R., Skubiszewska-Zięba J. Interfacial behavior of n-decane bound to weakly hydrated silica gel and nanosilica over a broad temperature range. Langmuir. 2013. 29(13): 4303. https://doi.org/10.1021/la400392h
Gun'ko V.M., Turov V.V., Zarko V.I., Pakhlov E.M., Charmas B., Skubiszewska-Zięba J. Influence of structural organization of silicas on interfacial phenomena. Colloids Surf., A. 2016. 492: 230. https://doi.org/10.1016/j.colsurfa.2015.12.030
Mitchell J., Webber J.B.W., Strange J.H. Nuclear magnetic resonance cryoporometry. Phys. Rep. 2008. 461(1): 1. https://doi.org/10.1016/j.physrep.2008.02.001
Petrov O.V., Furó I. NMR cryoporometry: Principles, applications and potential. Progr. NMR Spectroscopy. 2009. 54(2): 97. https://doi.org/10.1016/j.pnmrs.2008.06.001
Aksnes D.W., Førland K., Kimtys L. Pore size distribution in mesoporous materials as studied by 1H NMR. Phys. Chem. Chem. Phys. 2001. 3(15): 3203. https://doi.org/10.1039/b103228n
Hay J.N., Laity P.R. Observations of water migration during thermoporometry studies of cellulose films. Polymer. 2000. 41(16): 6171. https://doi.org/10.1016/S0032-3861(99)00828-9
Landry M.R. Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim. Acta. 2005. 433(1-2): 27. https://doi.org/10.1016/j.tca.2005.02.015
Weber J., Bergström L. Mesoporous hydrogels: revealing reversible porosity by cryoporometry, X-ray scattering, and gas adsorption. Langmuir. 2010. 26(12): 10158. https://doi.org/10.1021/la100290j
Gun'ko V.M., Oranska O.I., Paientko V.V., Sulym I.Ya. Particulate morphology of nanostructured materials. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 368. https://doi.org/10.15407/hftp11.03.368
Gun'ko, V.M. Textural characteristics of composite adsorbents analyzed with density functional theory and self-consistent regularization procedure. Him. Fiz. Tehnol. Poverhni. 2020. 11(2): 163. https://doi.org/10.15407/hftp11.02.163
Gun'ko V.M., Turov V.V., Pakhlov E.M., Krupska T.V., Charmas B. Effect of water content on the characteristics of hydro-compacted nanosilica. Appl. Surf. Sci. 2018. 459: 171.https://doi.org/10.1016/j.apsusc.2018.07.213
Gun'ko V.M. Various methods to describe the morphological and textural characteristics of various materials. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 317. https://doi.org/10.15407/hftp09.04.317
Gun'ko V.M. Nano/meso/macroporous materials characterization affected by experimental conditions and features of the used methods. Him. Fiz. Tehnol. Poverhni. 2020. 11(1): 5. https://doi.org/10.15407/hftp11.01.005
Gun'ko V.M. Polymer adsorbents vs. functionalized oxides and carbons: particulate morphology and textural and surface characterization. Polymers. 2021. 13(1249): 1. https://doi.org/10.3390/polym13081249
ImageJ. Version 1.53m. 2021. https://imagej.nih.gov/ij/, https://imagej.nih.gov/ij/plugins/granulometry.html
Fiji. 2021. https://fiji.sc/, https://imagej.net/local_thickness
Gun'ko V.M. Morphological and textural features of various materials composed of porous or nonporous nanoparticles differently packed in secondary structures. Appl. Surf. Sci. 2021. 569: 151117. https://doi.org/10.1016/j.apsusc.2021.151117
Gun'ko V.M., Matkovsky A.K., Charmas B., Skubiszewska-Zięba J., Pasieczna-Patkowska S. Carbon-silica gel adsorbents: effects of matrix structure and carbon content on adsorption of polar and nonpolar adsorbates. J. Therm. Anal. Calorim. 2017. 128(3): 1683. https://doi.org/10.1007/s10973-017-6097-7
DOI: https://doi.org/10.15407/hftp13.01.047
Copyright (©) 2022 V. M. Gun'ko
This work is licensed under a Creative Commons Attribution 4.0 International License.