Хімія, фізика та технологія поверхні, 2022, 13 (2), 209-235.

Переваги та недоліки електродугових методів синтезу вуглецевих наноструктур



DOI: https://doi.org/10.15407/hftp13.02.209

Ol. D Zolotarenko, M. N. Ualkhanova, E. P. Rudakova, N. Y. Akhanova, An. D Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, O. O. Havryliuk

Анотація


Наведено огляд понад 100 сучасних літературних праць вітчизняних та іноземних дослідників, присвячений питанням електродугового синтезу (ЕДС) різних вуглецевих наноструктур (ВНС). ЕДС ВНС можна здійснювати як у газовому, так і в рідкому середовищі. ЕДС у газовому середовищі має низку переваг, таких як висока продуктивність та швидкість процесу конденсації, а також легкість у керуванні режимами. Але такий метод синтезу також має недоліки: він вимагає наявності складної вакуумної та охолоджувальної системи, через що установки дуже громіздкі. Крім того, даний метод не вирішує проблему агломерації синтезованих ВНС і має побічний продукт синтезу у вигляді наросту (депозит) на електроді. ЕДС у рідкому середовищі відрізняється більшою компактністю обладнання, оскільки не потребує систем вакуумування (процес відбувається при атмосферному тиску) та охолодження (рідке середовище відіграє роль тепловідведення). При такому способі синтезу використовуються різні типи діелектричних рідин - від дистильованої води (Н2О), рідкого азоту (N2) до вуглеводневих розчинників, які можуть слугувати джерелом вуглецю в зоні синтезу. Змінюючи склад рідкої фази, можна досягти синтезу різних типів ВНС. Також цей метод передбачає використання металевих електродів, які, крім тривалого терміну експлуатації, можуть виконувати роль каталізаторів. При цьому частинки металу можуть бути інкапсульовані ВНС, формуючи композити з різними магнітними властивостями. У деяких роботах було показано, що при застосуванні металевих електродів у процесі ЕДС у рідкому середовищі можуть утворюватися суміші карбідів металів. Рідке середовище після ЕДС ВНС також являє науковий інтерес. Ймовірно, у рідкому середовищі містяться нові модифікації розчинних органічних сполук, пошуком яких займаються дослідники всього світу. Так, вчені виявили, що після ЕДС у рідкому середовищі з використанням графітових електродів робочий розчин (С6Н6) змінив свій колір. Це говорить про утворення в ньому розчинних органічних сполук.

В огляді на основі літературних даних наведено таблицю режимів для промислового синтезу одностінних ВНС,а також наведено перелік режимів для створення дефектних ВНС, як метод збільшення площі адсорбції у наночастинок.

Зафіксовано вирішення важливих проблем методу ЕДС: агломерації ВНС; проблема формування депозиту; підвищення продуктивності.


Ключові слова


плазмохімічний синтез; електродуговий розряд; вуглецеві наноструктури (ВНС); вуглецеві нанокластери (ВНК); вуглецеві нанотрубки (ВНТ); кріогенні середовища; рідкі діелектрики

Повний текст:

PDF

Посилання


1. Anikina N.S., Krivushhenko O.Ya., Schur D.V., Zaginajchenko S.Yu., Chuprov S.S., Mil'to K.A., Zolotarenko A.D. Identification of endohedral metallofullerenes by uv-vis spectroscopy. In: Proc. Of IX Int. Conf. "Hydrogen Material Science and Chemistry of Metal Hydrides" (Sept. 5-11, 2005, Sevastopol, Crimea, Ukraine). P. 848. [in Russian].

2. Anikina N.S., Yu Z.S., Maistrenko M.I., Zolotarenko A.D., Sivak G.A., Schur D.V. Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. V. 172. (New York, Boston, London, Moscow: Kluwer Academic Publishers, 2005). P. 207. https://doi.org/10.1007/1-4020-2669-2_22

3. Matysina Z.A., Zaginaychenko S.Yu., Schur D.V. Solubility of Impurities in Metals, Alloys, Intermetallics, Fullerites. (Dnepropetrovsk: Naukaiobrazovanie, 2006). [in Russian].

4. Anikina N.S., Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D. In: Proc. of 10th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials".(Sudak, Ukraine, 2007). P. 680.

5. Anikina N.S., Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D., Krivushenko O.Ya. Proc. of 10th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (Sept. 22-28, 2007, Sudak, Ukraine, 2007). P. 676.

6. Schur D.V., Zaginaichenko S.Y., Zolotarenko A.D. Solubility and Transformation of Fullerene C60 Molecule. Carbon Nanomaterials in Clean Energy Hydrogen Systems. (NATO Science Series, 2008). P. 85. https://doi.org/10.1007/978-1-4020-8898-8_7

7. Akhanova N.Y., Schur D.V., Gavrylyuk N.A., Gabdullin M.T., Anikina N.S., Zolotarenko An.D., Krivushchenko O.Ya., Zolotarenko Ol.D., Gorelov B.M., Erlanuli E., Batrishev D.G. Use of absorption spectra for identification of endometallofullerenes. Him. Fiz. Tehnol. Poverhni. 2020. 11(3): 429. [in Ukrainian]. https://doi.org/10.15407/hftp11.03.429

8. Schur D.V., Zaginaichenko S.Yu., Lysenko E.A., Golovchenko T.N., Javadov N.F. The Forming Peculiarities of C60 Molecule. Carbon Nanomaterials in Clean Energy Hydrogen Systems. (NATO Science for Peace and Security Series, 2008). P. 53. https://doi.org/10.1007/978-1-4020-8898-8_5

9. Zolotarenko A.D., Schur D.V., Zaginajchenko S.Yu., Anikina N.S., Matysina Z.A., Krivushhenko O.Ya., Skorohod V.V., Zolotarenko An.D., Zolotarenko Al.D. Knigatezisov XI-oj Mezhd. Konf. "Vodorodnoe materialovedenieihimija uglerodnyh nanomaterialov". (2009, Jalta, Krym, Ukraina). P. 606. [in Russian].

10. Gavryljuk N.A., Ahanova N.E., Shhur D.V., Pomytkin A.P., Veziroglu A., Veziroglu T.N., Gabdullin M.T., Ramazanov T.S.,. Zolotarenko Al.D., Zolotarenko An.D. Yttrium in fullerenes. Alternative Energy and Ecology (ISJAEE). 2021. 01-03: 47.

11. Akhanova N.Ye., Shchur D.V., Pomytkin A.P., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Ualkhanova M., Bo W., Ang D. Gadolinium Endofullerenes. J. Nanosci. Nanotechnol. 2021. 21(4): 2435. https://doi.org/10.1166/jnn.2021.18970

12. Dubovoj A.G., Perekos A.E., Lavrenko V.A., Rudenko Yu.M., Efimova T.V., Zalustkii V.P., Rushitskaya T.V., Kotko A.V., Zolotarenko Al.D., Zolotarenko An.D. Effect of a Magnetic Field on the Phase-Structural State and Magnetic Properties of Finely Dispersed Fe Powders Obtained by Electrospark Dispersion. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(1): 131. [in Russian].

13. Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko An.D., Zolotarenko Al.D. Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases. Powder Metall. Met. Ceram. 2018. 56(9-10): 504. https://doi.org/10.1007/s11106-018-9922-z

14. Zaginajchenko S.Yu., Schur D.V., Gabdullin M.T., Dzhavadov N.F., Zolotarenko Al.D., Zolotarenko An.D., Zolotarenko A.D., Mamedova S.H., Omarova G.D., Mamedova Z.T. Features of pyrolytic synthesis and certification of carbon nanostructured materials. Alternative Energy and Ecology (ISJAEE). 2018. (19-21):72. [in Russian]. https://doi.org/10.15518/isjaee.2018.19-21.072-090

15. Akhanova N.Y., Shchur D.V., Pomytkin A.P., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Ualkhanova M., Bo W., Ang D. Methods for the Synthesis of Endohedral Fullerenes. J. Nanosci. Nanotechnol. 2021. 21(4): 2446. https://doi.org/10.1166/jnn.2021.18971

16. Akhanova N., Orazbayev S., Ualkhanova M., Perekos A.Y., Dubovoy A.G., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Gabdullin M.T., Ramazanov T.S. Nanoparticles Iron of Synthesis on Field Magnetic of Influence. J. Nanosci. Nanotechnol. Appl. 2019. 3(3): 1.

17. Golovko E.I., Zolotarenko A.D., Shchur D., Zaginaichenko S.Yu. Heat Stability of Me-C Nanocomposites. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011: 369. https://doi.org/10.1007/978-94-007-0899-0_29

18. Zolotarenko An.D., Zolotarenko Al.D., Rudakova E., Zaginaichenko S.Yu., Dubovoy A.G., Schur D.V., Lavrenko V.A., Pomytkin A.P., Perekos A.E., Zalutskiy V.P., Divizinyuk M.M., Azarenko E.V., Tarasenko Yu.A. The Peculiarities of Nanostructures Formation in Liquid Phase. Carbon Nanomaterials in Clean Energy Hydrogen Systems-II. 2011: 137. https://doi.org/10.1007/978-94-007-0899-0_11

19. Shulga Y.M., Martynenko V.M., Krestinin A.V., Kharitonov A.P., Davidova G.I., Knerelman E.I., Krastev V.I., Schur D.V. Mass-spectrometric investigation of gases evolved by fluorinated single-wall carbon nanotubes during heating. Int. J. Hydrogen Energy. 2011. 36(1): 1349. https://doi.org/10.1016/j.ijhydene.2010.06.084

20. Schur D.V., Zolotarenko A.D., Zolotarenko A.D., Zolotarenko O.P., Chimbai M.V., Akhanova N.Y., Sultangazina M., Zolotarenko E.P. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Phys. Sci. Technol. 2019. 6(1-2): 46. https://doi.org/10.26577/phst-2019-1-p9

21. Zolotarenko Al.D., Zolotarenko An.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Schur D.V., Gavrylyuk N.A., Ramazanov T.S., Akhanova, N.Y., Gabdullin M.T. Methods of theoretical calculations and of experimental researches of the system atomic hydrogen-metal. Int. J. Hydrogen Energy. 2022. 47(11): 7310. https://doi.org/10.1016/j.ijhydene.2021.03.065

22. Sementsov Yu.I., Gavrilyuk N.A., Prikhod'ko G.P., Melezhyk A.V., Pyatkovsky M.L., Yanchenko V.V., Revo S.L., Ivanenko E.A., Senkevich A.I. Properties of PTFE-MWNT composite materials. In: Hydrogen materials science and chemistry of carbon nanomaterials. (NATO Security through Science Series A: Chemistry and Biology, 2007). P. 757. https://doi.org/10.1007/978-1-4020-5514-0_95

23. Shchur D., Zolotarenko A.D., Shul'ga Yu.M., Timofeeva I.I., Zolotarenko A.D., Rogozinskaya A.A., Klochkov L.A., Savenko A.F., Simanovskiy A.P., Sheshin E.P. XRD Study of Hydrogenated Fullerites and Metals from IV-V Groups. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. (NATO Science for Peace and Security Series C: Environmental Security, 2008). P. 805. https://doi.org/10.1007/978-1-4020-8898-8_100

24. Sementsov Yu.I., Gavriluk N.A., Prikhod'ko G.P., Aleksyeyeva T.A. Biocompatibility of Multiwall Cnt and Nanocomposites on the Base of Polymers. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. (NATO Science for Peace and Security Series C: Environmental Security, 2008). P. 327. https://doi.org/10.1007/978-1-4020-8898-8_39

25. Shulga Yu.M., Baskakov S.A., Zolotarenko A.D., Kabachkov E.N., Muradian V.E., Voilov D.N., Smirnov V.A., Martynenko V.M., Schur D.V., Pomytkin A.P. Coloring graphene oxide nanosheets and colored polymer compositions based on them. Nanosystems, nanomaterials, nanotechnologies. 2013. 11(1): 161. [in Russian]. https://doi.org/10.5402/2012/647849

26. Volodin A.A., Zolotarenko A.D., Bel'mesov A.A., Gerasimova E.V., Schur D.V., Tarasov V.R., Zaginaichenko S.Yu., Doroshenko S.V., Zolotarenko An.D., Zolotarenko Al.D. Conductive Composite Materials Based on Metal Oxides and Carbon Nanostructures. Nanosystems, nanomaterials, nanotechnologies. 2014. 12(4): 705. [in Russian].

27. Schur D.V., Zaginaichenko S.Y., Veziroglu T.N. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energy. 2015. 40(6): 2742. https://doi.org/10.1016/j.ijhydene.2014.12.092

28. Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu N., Scryabina N.E. Experimental evaluation of total hydrogen capacity for fullerite C60. Int. J. Hydrogen Energy. 2011. 36(1): 1143. https://doi.org/10.1016/j.ijhydene.2010.06.087

29. Schur D.V., Lavrenko V.A. Studies of titanium-hydrogen plasma interaction. Vacuum. 1993. 44(9): 897. https://doi.org/10.1016/0042-207X(93)90247-8

30. Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu., Schur D.V. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 1. https://doi.org/10.1016/0022-3697(94)00106-5

31. Matysina Z.A., Zaginaichenko S.Yu., Schur D.V. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X

32. Lytvynenko Yu.M.,Schur D.V. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1): 753. https://doi.org/10.1016/S0960-1481(98)00272-9

33. Matysina Z.A., Shchur D.V. Phase Transformations α → β → γ → δ → ε in Titanium Hydride TiH x with Increase in Hydrogen Concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874

34. Matysina Z.A., Zaginajchenko S.Y., Shhur D.V., Zolotarenko A.D., Zolotarenko Al.D., Gabdullin T.M. Bi-alkaline and potassium alanates are promising hydrogen accumulators. Alternative Energy and Ecology (ISJAEE). 2017. (13-15): 37. https://doi.org/10.15518/isjaee.2017.13-15.037-060

35. Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gabdullin M.T. Hydrogen Sorption Properties of Potassium Alanate. Russ. Phys. J. 2018. 61(2): 253. https://doi.org/10.1007/s11182-018-1395-5

36. Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Veziroglu T.N., Veziroglu A., Gabdullin M.T., Zolotarenko Al.D., Zolotarenko An.D. The mixed lithium-magnesium imide Li2Mg(NH)2 a promising and reliable hydrogen storage material. Int. J. Hydrogen Energy. 2018. 43(33): 16092. https://doi.org/10.1016/j.ijhydene.2018.06.168

37. Schur D.V., Veziroglu A., Zaginaychenko S.Y., Matysina Z.A., Veziroglu T.N., Gabdullin M.T., Ramazanov T.S., Zolotarenko An.D., Zolotarenko Al.D. Theoretical studies of lithium-aluminum amidandammonium asperspective hydrogenstorage. Int. J. Hydrogen Energy. 2019. 44(45): 24810. https://doi.org/10.1016/j.ijhydene.2019.07.205

38. Matysina Z.A., Gavrylyuk N.A., Kartel M.T., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko An.D., Zolotarenko Al.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069

39. Shchur D.V., Zaginaichenko S.Yu., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko Al.D., Zolotarenko An.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7

40. Matysina Z.A., Zaginaichenko S.Y., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gabdulin M.T., Kopylova L.I., Shaposhnikova T.I. Phase Transformations in the Mixed Lithium-Magnesium Imide Li2Mg(NH)2. Russ. Phys. J. 2019. 61(12): 2244. https://doi.org/10.1007/s11182-019-01662-7

41. Zaginaichenko S.Yu., Matysina Z.A., Schur D.V., Zolotarenko A.D. Li-N-H system - Reversible accumulator and store of hydrogen. Int. J. Hydrogen Energy. 2012. 37(9): 7565. https://doi.org/10.1016/j.ijhydene.2012.01.006

42. Schur D.V., Gabdullin M.T., Bogolepov V.A., Veziroglu A., Zaginaichenko S.Yu., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011

43. Shchur D.V., Astratov N.S., Pomytkin A.P., Zolotarenko A.D. Protection of securities with the help of fullerenes. In: VIII International Conference "Hydrogen materials science and chemistry of carbon nanomaterials". (2003, Sudak, Crimea, Ukraine). P. 424. https://doi.org/10.1007/1-4020-2669-2_21

44. Tikhotskii S.A., Fokin I.V., Schur D.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya, Physics of the Solid Earth. 2011. 47(4): 326. https://doi.org/10.1134/S1069351311030062

45. Lavrenko V.A., Shchur D.V., Zolotarenko A.D., Zolotarenko A.D. Electrochemical Synthesis of Ammonium Persulfate (NH4)2S2O8 Using Oxygen-Depolarized Porous Silver Cathodes Produced by Powder Metallurgy Methods. Powder Metall. Met. Ceram. 2019. 57(9): 596. https://doi.org/10.1007/s11106-019-00021-y

46. Zolotarenko An.D., Zolotarenko Al.D., Veziroglu A., Veziroglu T.N., Shvachko N.A., Pomytkin A.P., Gavrylyuk N.A., Schur D.V., Ramazanov T.S., Gabdullin M.T. The use of ultrapure molecular hydrogen enriched with atomic hydrogen in apparatuses of artificial lung ventilation in the fight against virus COVID-19. Int. J. Hydrogen Energy. 2021. 47(11): 7281. https://doi.org/10.1016/j.ijhydene.2021.03.025

47. Hnesyna H.H., Skorohod V.V. Inorganic materials science. V. 2, Book 2. - Materials and technologies; Encyclopedic edition. (Kyiv: Naukova dumka, 2008). [in Russian].

48. Radushkevych L.V.,Lukianovych B.M. On the structure of carbon formed during the thermal decomposition of carbon monoxide on an iron contact. J. Phys. Chem. 1952. 26: 88. [in Russian].

49. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991. 354: 56. https://doi.org/10.1038/354056a0

50. Bogolepov V.A., Schur D.V., Adeev V.M., Golovchenko T.N., Voronaya T.V., Kotko A.V., Lysenko E.A. Synthesis of carbon nanotubes on the surface of carbon fibers. In: Proc. of 11' International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials" (August 25-31, 2009, Yalta, Ukraine). P. 406.

51. Mileeva Zh.A., Bogolepov V.A., Schur D.V., Zaqjnaichenko S.Yu., Begenev V.A., Shabalin I.L., Ross D.K. Hybrid 3D-nano/microstructnres obtaining on the basis of pretreated carbon fibers. In: Proc. of 11' International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (August 25-31, 2009, Yalta, Ukraine). P. 746.

52. Thess A., Lee R., Nikolaev P., Dai H., Petit P., Robert J., Xu C., Lee Y.-H., Kim S.-G., Rinzler A.G., Colbert D.T., Scuser G.E., Tomanek D., Fisher J.E., Smally R.E. Crystalline Ropes of Metallic Carbon Nanotubes. Science. 1996. 273(5274): 483. https://doi.org/10.1126/science.273.5274.483

53. Rao A., Richter E., Bandow S., Chase B., Eklund P.C., Williams K.A., Fang S., Subbaswamy K.R., Menon M., Thess A., Smally R.E., Dresselhaus G., Dresslhaus M.S. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science. 1996. 275(5297): 187. https://doi.org/10.1126/science.275.5297.187

54. Dolmatov V.Yu., Veretennykova M.V., Marchukov B.A., SushchevV.H. Modern industrial possibilities for the synthesis of nanodiamonds. Solid State Physics. 2004. 46(4): 596. https://doi.org/10.1134/1.1711434

55. Schur D.V., Zaginaichenko S.Yu., Veziroglu T.N. The hydrogenation process as a method of investigation of fullerene C60 molecule. Int. J. Hydrogen Energy. 2015.40(6): 2742. https://doi.org/10.1016/j.ijhydene.2014.12.092

56. Great Soviet Encyclopedia. (Moscow: Soviet Encyclopedia, 1969-1978).

57. Sano N., Kikuchi T., Wang H., Chhowalla M.G., Amaratunga A.J. Carbon nanohorns hybridized with a metal-included nanocapsule. Carbon. 2004. 42: 95. https://doi.org/10.1016/j.carbon.2003.10.001

58. Alexandrou H., Wang N.S., Amaratunga G.A.J. Structure of carbon onions and nanotubes formed by arc in liquids. J. Chem. Phys. 2004. 120(2): 1055. https://doi.org/10.1063/1.1629274

59. Kaneko T., Okada T., Hatakeyama R. Nanocarbon formation using arc discharge plasma in hydrocarbon solvents as a carbon source. XXVIIth ICPIG. (Eindhoven, the Netherlands, 2005). P. 5.

60. Sano N. Formation of multi-shelled carbon nanoparticles by arc discharge in liquid benzene. Mater. Chem. Phys. 2004. 88(2-3): 235. https://doi.org/10.1016/j.matchemphys.2004.07.018

61. Zolotarenko O.D., Rudakova O.P., Kartel M.T., Kaleniuk H.O., Zolotarenko A.D., Schur D.V., Tarasenko Yu.O. The mechanism of forming carbon nanostructures by electric arc-method. Surface. 2020. 12(27): 263. [in Ukrainian]. https://doi.org/10.15407/Surface.2020.12.263

62. Shchur D.V., Shulga Yu.M., Tarasov B.P., Zaginaichenko S.Yu. Some properties of materials produced by the electric arc sputtering of graphite-cobalt-nickel electrodes. In: Int. Conference "Carbon Nanotubes". (April 10-11, 2000, Wyndam Miami Beach, Miami, FL, USA). P. 186.

63. Sano N., Wang H., Chhowalla M., Alexandrou I., Amaratunga G.A.J. Synthesis of carbon 'onions' in water. Nature. 2001. 414: 506. https://doi.org/10.1038/35107141

64. Dubovoi A.H., Perekos A.E., Lavrenko V.A., Rudenko Yu.M., Efymova T.V., Zalutskyi V.P., Ruzhytskaia T.V., Kotko A.V., Zolotarenko Al.D., Zolotarenko An.D. Effect of a Magnetic Field on the Phase-Structural State and Magnetic Properties of Finely Dispersed Fe Powders Obtained by Electrospark Dispersion. Nanosystems, nanomaterials, nanotechnologies. 2013. 11(1): 131.

65. Zheng Y., Nishikita-Gano M., Xiao C., Ando T. A Novel Synthesis Method for Aligned Carbon Nanotubes in Organic Liquids. Jpn. J. Appl. Phys. 2002. 41: L408. https://doi.org/10.1143/JJAP.41.L408

66. Zolotarenko Al.D., Zolotarenko An.D., Anikina N.S., Krivushchenko O.Ya., Golovko E.I., Zaginaichenko S.Yu. Metalcarbon nanocomposites synthesized by mechanical mixtures evaporation in electric ARC. In: Proc. of 11th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (August 25-31, 2009, Yalta, Ukraine). P. 778.

67. Lavrenko V.A., Zaginaichenko S.Yu., Shvachko N.A., Milto O.V., Molodkin V.B., Perekos A.E., Nadutov V.M., Tarasenko Yu.A., Zolotarenko Al.D., Zolotarenko An.D. Encapsulated Ferromagnetic Nanoparticles in Carbon Shells. Carbon Nanomaterials in Clean Energy Hydrogen Systems. V. 2. (NATO Science for Peace and Security Series C: Environmental Security, 2011). P. 127. https://doi.org/10.1007/978-94-007-0899-0_10

68. Rudakova E., Zaginaichenko S.Yu., Dubovoy A.G., Schur D.V., Perekos A.E., Zalutskiy V.P., Divizinyuk M.M., Azarenko E.V., Tarasenko Yu.A., Zolotarenko An.D., Zolotarenko Al.D. The Peculiarities of Nanostructures Formation in Liquid Phase. In: Carbon Nanomaterials in Clean Energy Hydrogen Systems. V. 2. (NATO Science for Peace and Security Series C: Environmental Security, 2011). P. 137. https://doi.org/10.1007/978-94-007-0899-0_11

69. Zaginaichenko S.Yu., Perekos A.E., Schur D.V., Dubovoy A.G., Zolotarenko A.D., Zolotarenko An.D., Zolotarenko Al.D., Kotko A.V., Efimova T.V., Zalutskiy V.P., Rugitskaya T.V. Temperature dependence of specific Magnetization of Metal-Carbon Nanocomposites synthesized by ARC discharge in Liquid. In: Proc. of 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics. (July 16-18, 2012, Malta). P. 1720.

70. Dubovoy A.G., Perekos A.E., Lavrenko V.A., Rudenko Y.M., Efimova T.V., Zalutskiy V.P., Ruzhitskaya T.V., Kotko A.V., Zolotarenko Al.D., Zolotarenko An.D. Effect of magnetic field on phase-structural state and magnetic properties of Fe high-dispersive powders, produced by electrospark dirpersion. Nanosystems, Nanomaterials, Nanotechnologies. 2013. 11(1): 131.

71. Lavrenko V.A., Podchernyaeva I.A., Shchur D.V., Zolotarenko An.D., Zolotarenko Al.D. Features of Physical and Chemical Adsorption During Interaction of Polycrystalline and Nanocrystalline Materials with Gases. Powder Metall. Met. Ceram. 2018. 56(9-10): 504. https://doi.org/10.1007/s11106-018-9922-z

72. Ualkhanova M., Perekos A.Y., Dubovoy A.G., Schur D.V., Zolotarenko Al.D., Zolotarenko An.D., Gavrylyuk N.A., Gabdullin M.T., Ramazanov T.S., Akhanova N., Orazbayev S. The influence of magnetic fiend on synthesis of iron nanoparticles. J. Nanosci. Nanotechnol. Appl. 2019. 3(3): 1.

73. Xuesong Li, Hongwei Zhu, Bin Jiang, Jun Ding, Cailu Xu, Dehai Wu. High-yield synthesis of multi-walled carbon nanotubes by water-protected arc discharge method. Carbon. 2003. 41(8): 1645. https://doi.org/10.1016/S0008-6223(03)00128-3

74. Zolotarenko Al.D. PhD (Chem.) Thesis. (Kyiv, 2014). [in Ukrainian].

75. Zolotarenko An.D., Zolotarenko Al.D., Schur D.V., Zaginaichenko S.Yu., Dubovoy A.G. On the processes of Carbon Nanostructures formation in Liquid Phase. In: Proc. of 11th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (August 25-31, 2009, Yalta, Ukraine). P. 402.

76. Noriaki S., Tawatchai C., Tatsuo K., Wiwut T. Controlled synthesis of carbon nanoparticles by arc in water method with forced convective jet. J. Appl. Phys. 2004. 96(1): 645. https://doi.org/10.1063/1.1756216

77. Hsin Y.L., Hwang K.C., Chen F.-R., Kai J.-J. Production and in-situ Metal Filling of Carbon Nanotubes in Water. Adv. Mater. 2001. 13(1): 830. https://doi.org/10.1002/1521-4095(200106)13:11<830::AID-ADMA830>3.0.CO;2-4

78. Iijima S., Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993. 363: 603. https://doi.org/10.1038/363603a0

79. Chhowalla M., Teo K.B.K., Ducati C., Rupesinghe N.L., Amaratunga G.A.J., Ferrari A.C., Roy D., Robertson J., Milne W.I. Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 2001. 90(10): 5308. https://doi.org/10.1063/1.1410322

80. Nozaki T., Kimura Y., Okazaki K., Nozaki T. Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD. J. Phys. D: Appl. Phys. 2002. 35(21): 2779. https://doi.org/10.1088/0022-3727/35/21/314

81. Endo M., Takeuchi K., Lagrashi S., Kobori K., Shiraishi M., Kroto H.W. The production and structure of pyrolytic carbon nanotubes (PCNTs). J. Phys. Chem. Solids. 1993. 54(12): 1841. https://doi.org/10.1016/0022-3697(93)90297-5

82. Cheng H.M., Li F., Su G., Pan H.Y., He L.L., Sun X., Dresselhaus M.S. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett. 1998. 72(25): 3282. https://doi.org/10.1063/1.121624

83. Zaginaichenko S.Yu., Zolotarenko Al.D., Zolotarenko An.D., Schur D.V., Anikina N.S., Krivushchenko O.Ya., Magrez A., Baibarac M. Metalcarbon Nanocomposites synthesized by evaporation in electric ARC. In: Proceedings of 21st Annual International Conference on Composites or Nano Engineering, Tenerife. (July 21-27, 2013, Canary Islands, Spain). P. 913.

84. Zhu H.W., Li X.S., Jiang B., Xu C.L., Zhu Y.F., Wu D.H., Chen X.H. Formation of carbon nanotubes in water by the electric-arc technique. Chem. Phys. Lett. 2002. 366(5-6): 664. https://doi.org/10.1016/S0009-2614(02)01648-2

85. Sano N., Wang H., Alexandrou I., Chhowalla M., Teo K.B.K., Amaratunga G.A.J., Iimura K. Properties of carbon onions producedby an arc discharge in water. J. Appl. Phys. 2002. 92(5): 2783. https://doi.org/10.1063/1.1498884

86. Sano N., Naito M., Chhowalla M., Kikuchi T., Matsuda S., Iimura K., Wang H., Kanki T., Amaratunga G.A.J. Pressure effects on nanotubes formation using the submerged arc in water method. Chem. Phys. Lett. 2003. 378(1-2): 29. https://doi.org/10.1016/S0009-2614(03)01246-6

87. Abdullin Kh.A., Gabdullin M.T., Ramazanov T.S., Batryshev D.G., Ismailov D.V., Schur D.V., Kerimbekov D.S. The synthesis of iron nanoparticles in the hydro-alcoholic solution of ferric chloride. Recent Contributions to Physics. 2015. 52(1): 46. [in Russian].

88. Antisari M.V., Marazzi R., Krsmanovic R. Synthesis of multi-walled carbon nanotubes by electric arc discharge in liquid environments. Carbon. 2003. 41: 2393. https://doi.org/10.1016/S0008-6223(03)00297-5

89. Lange H., Sioda M., Huczko A., Zhu Y.Q., Kroto H.W., Walton D.R.M. Nanocarbon production by arc discharge in water. Carbon. 2003. 41(8): 1617. https://doi.org/10.1016/S0008-6223(03)00111-8

90. Biro L.P., Horvath Z.E., Szalmas L., Kertesz K., Weber F., Juhasz G., Radnoczi G., Gyulai J. Continuous carbon nanotube production in underwater AC electric arc. Chem. Phys. Lett. 2003. 372(3-4): 399. https://doi.org/10.1016/S0009-2614(03)00417-2

91. Qiu J.S., Zhou Y., Yang Z.G., Guo S.C., Tsang S.C., Harris P.J.F. Preparation of fullerenes using carbon rods manufactured from Chinese hard coals. Fuel. 2000. 79(11): 1303. https://doi.org/10.1016/S0016-2361(99)00281-1

92. Qiu J.S., Zhang F., Zhou Y., Han H.M., Hu D.S., Tsang S.C., Harris P.J.F. Carbon nanomaterials from eleven caking coals. Fuel. 2002. 81(11-12): 1509. https://doi.org/10.1016/S0016-2361(02)00069-8

93. Qiu J.S., Zhou Y., Wang L.N., Tsang S.C. Formation of carbon nanotubes and encapsulated nanoparticles from coals with moderate ash contents. Carbon. 1998. 36(4): 465. https://doi.org/10.1016/S0008-6223(98)90019-7

94. Qiu J.S., Li Y.F., Wang Y.P., Wang T.H., Zhao Z.B., Zhou Y., Li F., Cheng H.M. High-purity single-walled carbon nanotubes synthesized from coal by arc discharge. Carbon. 2003. 41(11): 2170. https://doi.org/10.1016/S0008-6223(03)00242-2

95. Qiu J., Li Y., Wang Y., Zhao Z., Zhou Y., Wang Y. Synthesis of carbon-encapsulated nickel nanocrystals by arc-discharge ofcoal-based carbons in water. Fuel. 2004. 83(4): 615. https://doi.org/10.1016/j.fuel.2003.09.005

96. Zolotarenko Ol.D., Rudakova O.P., Akhanova N.E., Ualkhanova M., Zolotarenko An.D., Zolotarenko O.D., Habdullyn M.T., Chymbai M.V., Havryliuk N.A., Shchur D.V., Zahorulko I.V. Fullerenes and carbon nanostructures derived from EGSP and MPG-7 graphite. In: Proceedings of the III All-Ukrainian Conference of Young Scientists "Modern Materials Science. Materials and Technologies SMMT-2021". (October 19-20, 2021, Kyiv, Ukraine). P. 17. [in Ukrainian].

97. Koprinarov N.S., Constantinova M.A., Pchelarov G.V., Marinov M.V. Carbon macrostructures obtained at AC arc discharge. J. Cryst. Growth. 1997. 171(1-2): 111. https://doi.org/10.1016/S0022-0248(96)00453-8

98. Ishigami M., Cumings J., Zettl A., Chen S. Method for the Continuous Production of Carbon Nanotubes. Chem. Phys. Lett. 2000. 319(5-6): 457. https://doi.org/10.1016/S0009-2614(00)00151-2

99. Lange H., Saidane K., Razafinimanana M. Temperatures and C2 column densities in a carbon arc plasma. J. Phys. D: Appl. Phys. 1999. 32(9): 1024. https://doi.org/10.1088/0022-3727/32/9/313

100. Nakano J., Kanki J., Sano N. Synthesis of single-walled carbon nanotubes with nanohorns by arc in liquid nitrogen. Carbon. 2004. 42(3): 667. https://doi.org/10.1016/j.carbon.2003.12.078

101. Sano N., Ukita S.I. One-step synthesis of Pt-supported carbon nanohorns for fuel cell electrode by arc plasma in liquid nitrogen. Mater. Chem. Phys. 2006. 38(34): 447. https://doi.org/10.1016/j.matchemphys.2005.11.019

102. Zolotarenko An.D., Schur D.V., Zolotarenko AL.D., Chimbai M.V., Zolotarenko O.P., Zolotarenko A.D. Analysis and identification of platinum-containing nanoproducts of plasma-chemical synthesis in a gaseous medium. Current Trends in Chemical Engineering and Technology. 2018. 2018(1): 1.

103. Zolotarenko A.D., Zolotarenko A.D., Zolotarenko Al.D., Vojchuk G.A., Adeev V.M., Kotko A.V., Koval A.Yu., Firstov S.A., Schur D.V., Milto O.V., Zaginaichenko S.Yu., Golovko E.I. Synthesis of platinum-containing Carbon Nanostructures. In: Proc. of 9th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (September 5-11, 2005, Sevastopol, Ukraine). P. 1014.

104. Zolotarenko Al.D., Zolotarenko An-y.D., Zolotarenko Al.D., Zaginaichenko S.Yu., Adeev V.M., Schur D.V., Kotko A.V., Golovko E.I. Platinum-containing Nanostructural Carbon Material for fuel cells. In: International Conference on Carbon "Carbon'05". (July 3-7, 2005, Gyeongju, Korea). P. 90.

105. Prabhuram J., Zhao T.S., Wong C.W., Guo J.W. Synthesis and physical/electrochemical characterization of Pt/C nanocatalyst for polymer electrolyte fuel cells. Journal of Power Sources. 2004. 134(1): 1. https://doi.org/10.1016/j.jpowsour.2004.02.021

106. Mil'to O.V., Zolotarenko A.D., Zolotarenko Al.D., Zolotarenko An.D., Shaposhnikova T.I., Khotynenko N.G., Adejev V.M., Kotko A.V., Zaginaichenko S.Yu., Schur D.V. Deposition of Catalyst-containing Carbon Nanostructures on proton-conducting polymer membranes by electrophoresis. In: Proc. of 9th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (September 5-11, 2005, Sevastopol, Ukraine). P. 1074.

107. Matsumoto T., Komatsu T., Arai K., Yamazaki T., Kijima M., Shimizu H., Takasawa Y., Nakamura J. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes. Chem. Commun. (Camb). 2004. 7: 840. https://doi.org/10.1039/b400607k

108. Yoshitake T., Shimakawa Y., Kuroshima S., Kimura H., Ichihashi T., Kubo Y., Kasuya D., Takahashi K., Kokai F., Yudasaka M., Iijima S. Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application. Physica B. 2002. 323: 124. https://doi.org/10.1016/S0921-4526(02)00871-2

109. Zolotarenko A.D., Zolotarenko A.D., Zolotarenko A.D., Voychuk G.A., Adeev V.M., Briefly A.V., Koval A.U., Firstov S.A., Schur D.V., Milto O.V., Zaginaichenko S.Y., Golovko E.I. Synthesis of Endofullerens with ARC Method. Nanosystems, Nanomaterials, Nanotechnologies. 2005. 3(4): 1133.

110. Zolotarenko An.D., Zolotarenko Al.D., Perekos A.E., Dubovoy A.G., Kotko A.V., Efimova T.V., Zalutskiy V.P., Rugitskaya T.V., Zaginaichenko S.Yu. Properties of Iron and Nickel Metal-Carbon Nanocomposites synthesized by ARC discharge in Liquid. In: Proc. of 11th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (August 25-31, 2009, Yalta, Ukraine). P. 772.

111. Zolotarenko A.D., Volodin A.A., Schur D.V., Tarasov B.P., Zolotarenko Al.D., Zolotarenko An.D., Rudakova E.P. Noncatalytic synthesis of Carbon Nanostructures. Fullerenes and fullerene-like structures in cindensed mediums. Proc. of Int. Symposium. (2011, Minsk: BSU). P. 286.

112. Zolotarenko O.D., Volodin O.O., Schur D.V., Tarasov B.P., Zolotarenko Ol.D., Zolotarenko An.D., Rudakov O.P. Synthesis of Carbon Nanostructures by Noncatalytic Method. In: II conference of young scientists "Reality and prospects of materials science 2011". (2011, Kyiv). P. 137.

113. Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Zolotarenko An.D., Zolotarenko Al.D. Synthesis of Carbon Nanostructures in Liquid Helium. In: Proc. of 9th International Conference "Hydrogen Materials Science and Chemistry of Carbon Nanomaterials". (September 5-11, 2005,Sevastopol, Ukraine).

114. Biró L.P., Horváth Z.E., Szalmás L., Kertész K., Wéber F., Juhász G., Radnóczi G., Gyulai J. Continuous carbon nanotube production in underwater AC electric arc. Chem. Phys. Lett. 2003. 372(3-4): 399. https://doi.org/10.1016/S0009-2614(03)00417-2

115. Bera D., Brinley E., Kuiry S.C., McCutchen M., Seal S. Optoelectronically automated system for carbon nanotubes synthesis via arc-discharge in solution. Rev. Sci. Instrum. 2005. 76(3): 033903. https://doi.org/10.1063/1.1857465

116. Shenli J., Xing G., Xu Q., Shi Z. Influence of Magnetic Field on Carbon Nano-materials Produced in Liquid Arc. In: 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE. 2006. 10312046.

117. Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Zolotarenko O.D., Tarasenko Yu.O. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Physics of Metals and Advanced Technologies. 2021. 43(10): 1417.

118. Zolotarenko Ol., Rudakova E., Zolotarenko An., Schur D., Chymbai M. New composites based on carbon nanostructures and solid polymers for 3D printing technology FDM. In: IX International Scientific and Practical Conference "trends of development modern science and practice". (November 16-19, 2021, Stockholm, Sweden). P. 107.

119. Zolotarenko Al.D., Zolotarenko An.D., Sementsov Y.I., Schur D.V., Gavrylyuk N.A., Zolotarenko A.D., Tarasenko Yu.A., Rudakova E.P. Influence of carbon nanostructures on the mechanical characteristics of a composite based on solid polymers for 3D printing technology (FDM). In: 7th International Materials Science Conference HighMatTech-2021. (October 5-7, 2021 Kyiv, Ukraine). P. 13.




DOI: https://doi.org/10.15407/hftp13.02.209

Copyright (©) 2022 Ol. D Zolotarenko, M. N. Ualkhanova, E. P. Rudakova, N. Y. Akhanova, An. D Zolotarenko, D. V. Shchur, M. T. Gabdullin, N. A. Gavrylyuk, A. D. Zolotarenko, M. V. Chymbai, I. V. Zagorulko, O. O. Havryliuk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.