Хімія, фізика та технологія поверхні, 2023, 14 (1), 34-41.

Ефект Хонг-Оу-Менделя в композитах «гума-вуглецеві нанотрубки»



DOI: https://doi.org/10.15407/hftp14.01.034

L. A. Karachevtseva, V. V. Trachevskiy, O. O. Lytvynenko, M. T. Kartel

Анотація


Досліджено вплив багатостінних вуглецевих нанотрубок (ВНТ) на характеристики композитів «гума-вуглецеві нанотрубки». Проаналізовані спектри ІЧ відбивання композитів «гума–вуглецеві нанотрубки» з різним вмістом нанотрубок. Ідентифіковані частоти С–Н деформаційних коливань та С–Н валентних коливань. В спектрах ІЧ поглинання композитів на основі бутадієн-нітрильної гуми при 1 % нанотрубок після вулканізації виміряна дво-фотонна інтерференція з дво-полярними  осциляціями на частотах деформаційних та валентних коливань. В спектрах ІЧ поглинання композитів на основі бутадієн-нітрильної гуми при 1 % вуглецевих нанотрубок без вулканізації виявлено лише один пік з дво-полярними коливаннями. Дво-фотонна інтерференція є результатом квантового заплутування дипольно-активних коливань та розщеплення фотонів згідно з квантовим ефектом Хонг-Оу-Менделя (ХОМ). Двофотонне заплутування побудовано на основі максимально заплутаних станів, також відомих як стани Белла. ХОМ-ефект є перспективним для розробки висококогерентних оптичних квантових комп’ютерів.


Ключові слова


бутадієн-нітрильна гума; багатостінні вуглецеві нанотрубки; ефект Хонг-Оу-Менделя; спектри ІЧ відбивання та спектри ІЧ поглинання

Повний текст:

PDF (English)

Посилання


Trachevskiy V., Kartel M,, Sementsov Yu., Zhuravskyi S. Modification of Rubbers with Carbon Nanotubes. Int. J. Recent Sci. Res. 2017. 8(7): 18822.

Treacy M., Ebbesen T., Gibson J. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature. 1996. 381: 678. https://doi.org/10.1038/381678a0

Bokobza L. Multiwall carbon nanotube elastomeric composites. Polymer. 2007. 48(17): 4907. https://doi.org/10.1016/j.polymer.2007.06.046

Bauhofer W., Kovacs J. A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 2009. 69(10): 1486. https://doi.org/10.1016/j.compscitech.2008.06.018

Lacerda L., Bianco A., Prato M., Kostarelos M. Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Del. Rev. 2006. 58(14): 1460. https://doi.org/10.1016/j.addr.2006.09.015

Wilder M., Venema L., Rinzler A., Smalle R., Dekker C. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998. 391: 59. https://doi.org/10.1038/34139

Fan S., Chapline M., Franklin N., Tombler T., Cassell A., Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999. 283(5401): 512. https://doi.org/10.1126/science.283.5401.512

Wei B., Vajtai R., Ajayan P. Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 2001. 79(8): 1172. https://doi.org/10.1063/1.1396632

Zou G., Jain H., Jain M., Zhou H., Williams D., Zhou V., McCleskey T., Burrell A., Jia Q. Vertical connection of carbon nanotubes to silicon at room temperature using a chemical route. 2009. Carbon. 47(4): 933. https://doi.org/10.1016/j.carbon.2008.11.017

Thostenson E., Ren Z., Chou T-W. Advances in the Science and Technology of Carbon Nanotubes and their Composites. A Review. Compos. Sci. Technol. 2001. 61(13): 1899. https://doi.org/10.1016/S0266-3538(01)00094-X

Kompan M., Aksyanov I. Near-UV narrow-band luminescene of polyethylene and polytetrafluoroethylene. Phys. Solid State. 2009. 51: 1083. https://doi.org/10.1134/S1063783409050291

Tiwari A. Recent advancements in the field of Nanomaterials and Nanotechnology. Adv. Mater. Lett. 2017. 8(4): 322. https://doi.org/10.5185/amlett.2017/4001

Karachevtseva L., Kartel M., Bo Wang, Sementsov Yu., Trachevskyi V., LytvynenkoO., Onyshchenko V. Formation of carbon sp3 hybridization bonds in local electric fields of composites "polymer-CNT". Adv. Mater. Lett. 2018. 9(4): 296. https://doi.org/10.5185/amlett.2018.1964

Karachevtseva L., Kartel M., Bo W., Lytvynenko O., Onyshchenko V., Sementsov Yu., Trachevskiy V. "Semiconductor" Model of the "Polymer-CNTs" Composite Strengthening. Int. J. Mater. Sci. Appl. 2019. 8(6): 120.

Krimm S. Infrared Spectra of High Polymers. (Fcrtschr. Hochpolym.-Forsch., 1960). https://doi.org/10.1007/BF02283926

Karachevtseva L.A., Kartel M.T., Lytvynenko O.O. 1D and 2D polaritons in macroporous silicon structures with nano-coatings. Him. Fiz. Tehnol. Poverhni. 2021.11(1): 9. https://doi.org/10.15407/hftp12.01.009

Vinogradov E.A. Semiconductor microcavity polaritons. Phys. Usp. 2002. 45(12): 1213. https://doi.org/10.1070/PU2002v045n12ABEH001189

Vinogradov E.A., Zhizhin G.N., Yakovlev V.A. Resonance between dipole oscillations of atoms and interference modes in crystalline films. J. Exp. Theor. Phys. 1979. 50(3): 486.

Ou Z., Hong C., Mandel L. Relation between input and output states for a beam splitter. Opt. Commun. 1987. 63(2): 118. https://doi.org/10.1016/0030-4018(87)90271-9

Kartel M.T., Karachevtseva L.A., Sementsov Yu.I., Lytvynenko O.O. Hong-Ou-Mandel quantum effect on "polymer - multiwall CNT" composites. Him. Fiz. Tehnol. Poverhni. 2022.13(2): 170. https://doi.org/10.15407/hftp13.02.170




DOI: https://doi.org/10.15407/hftp14.01.034

Copyright (©) 2023 L. A. Karachevtseva, V. V. Trachevskiy, O. O. Lytvynenko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.