Атоми впровадження у кристалічній гексагональній структурі
DOI: https://doi.org/10.15407/hftp14.02.210
Анотація
В рамках роботи розглянуто гексагональну структуру металів типу В19 як сорбентів водню. Розглядаються кристалічні ґгатки, де в міжвузлі металу впроваджуються атоми домішок (водень). Для цього у роботі наведено зображення самої структури В19. В роботі вивчено розчинність водню в кристалічній структурі металів типу В19, використовуючи метод конфігурацій, а також знайдено в заміщенні вузлів і міжвузлів залежність від складу сплаву та температури. Також розглянуто ступінь далекого порядку у вузлах та визначено параметри кореляції у заміщенні. Наведено графічний вигляд впливу атомного порядку на розчинність домішок. Розрахункові дані, які отримані у роботі, збігаються з експериментальними даними інших досліджень, а отримані формули розрахунків дозволяють визначити енергетичні параметри сплавів, що мають певну наукову цінність. Запропонована система враховує лише атомну взаємодію та абсорбцію (розчинення), дифузію атомів впровадження в об’єм кристалічної структури, тому можна прогназувати введення лише атомa водню). Таким чином, отримані в роботі результати щодо параметрів кореляції при розподілі атомів лише в октапорах або лише в тетрапорах дозволяють глибше вивчати фізичні характеристики сплавів типу В19 і зрозуміти процеси сорбції водню робочими тілами для накопичувачів водню.
Ключові слова
Посилання
Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids and Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034
Abdullin K.A., Gabdullin M.T., Gritsenko L.V., Ismailov D.V., Kalkozova Z.K., Kumekov S.E., Mukash Z.O., Sazonov A.Y., Terukov E.I. Electrical, optical, and photoluminescence properties of ZnO films subjected to thermal annealing and treatment in hydrogen plasma. Semiconductors. 2016. 50(8): 1010. https://doi.org/10.1134/S1063782616080029
Mostovshchikov A.V., Ilyin A.P., Zabrodina I.K., Root L.O., Ismailov D.V. Measuring the changes in copper nanopowder conductivity during heating as a method for diagnosing its thermal stability. Key Eng. Mater. 2018. 769: 146. https://doi.org/10.4028/www.scientific.net/KEM.769.146
Baglyuk G.A., Ivasyshyn O.M., Stasyuk O.O., Savvakin D.G. Sintered metals and alloys: The effect of charge component composition on the structure and properties of titanium matrix sintered composites with high-modulus compounds. Powder Metall. Met. Ceram. 2017. 56(1-2): 59. https://doi.org/10.1007/s11106-017-9870-z
Baglyuk G.A., Sosnovskii L.A., Volfman V.I. Effect of carbon content on the properties of sintered steels doped with manganese and copper. Powder Metall. Met. Ceram. 2011. 50(3-4): 189. https://doi.org/10.1007/s11106-011-9317-x
Baglyuk G.A., Tolochin A.I., Tolochina A.V., Yakovenko R.V., Gripachevckii A.N., Golovkova M.E. Effect of Process Conditions on the Structure and Properties of the Hot-Forged Fe3Al Intermetallic Alloy. Powder Metall. Met. Ceram. 2016. 55(5-6): 297. https://doi.org/10.1007/s11106-016-9805-0
Baglyuk G.A., Poznyak L.A. Sintered wear-resistant iron-based materials. I. Materials fabricated by sintering and impregnation. Powder Metallurgy. 2001. (1-2): 44.
Sizonenko O.N., Baglyuk G.A., Taftai E.I., Zaichenko A.D., Lipyan E.V., Torpakov A.S., Zhdanov A.A., Pristash N.S. Dispersion and carburization of titanium powders by electric discharge. Powder Metall. Met. Ceram. 2013. 52(5-6): 247. https://doi.org/10.1007/s11106-013-9520-z
Ivashchenko V.I., Veprek S., Turchi P.E.A., Shevchenko V.I., Leszczynski J., Gorb L., Hill F. First-principles molecular dynamics investigation of thermal and mechanical stability of the TiN(001)/AlN and ZrN(001)/AlN heterostructures. Thin Solid Films. 2014. 564: 284. https://doi.org/10.1016/j.tsf.2014.05.036
Baglyuk G.A., Napara-Volgina S.G., Vol'Fman V.I., Mamonova A.A., Pyatachuk S.G. Thermal synthesis of Fe-B 4C powder master alloys. Powder Metall. Met. Ceram. 2009. 48(7-8): 381. https://doi.org/10.1007/s11106-009-9156-1
Havryliuk O.O., Semchuk O.Y. Formation of periodic structures on the solid surface under laser irradiation. Ukr. J. Phys. 2017. 62(1): 20. https://doi.org/10.15407/ujpe62.01.0020
Ivashchenko V.I., Shevchenko V.I. Effects of short-range disorder upon electronic properties of a-SiC alloys. Appl. Surf. Sci. 2001. 184(1-4): 137. https://doi.org/10.1016/S0169-4332(01)00671-7
Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Width of the surface plasmon resonance line in spherical metal nanoparticles. Semicond. Phys. Quantum Electron. Optoelectron. 2020. 23(3): 308.
Baglyuk G.A., Poznyak L.A. The sintering of powder metallurgy high-speed steel with activating additions. Powder Metall. Met. Ceram. 2002. 41(7-8): 366. https://doi.org/10.1023/A:1021113025628
Ilyin A.P., Mostovshchikov A.V., Root L.O., Zmanovskiy S.V., Ismailov D.V., Ruzieva G.U. Effect of beta-radiation exposure on the parameters of aluminum micropowders activity. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering. 2019. 330(8): 87.
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Phase transformation B1 to B2 in TiC, TiN, ZrC and ZrN under pressure. Condens. Matter Phys. 2013. 16(3): 33602. https://doi.org/10.5488/CMP.16.33602
Onoprienko A.A., Ivashchenko V.I., Dub S.N., Khyzhun O.Y., Timofeeva I.I. Microstructure and mechanical properties of hard Ti-Si-C-N films deposited by dc magnetron sputtering of multicomponent Ti/C/Si target. Surf. Coat. Technol. 2011. 205(21-22): 5068. https://doi.org/10.1016/j.surfcoat.2011.05.009
Khomenko E.V., Baglyuk G.A., Minakova R.V. Effect of deformation processing on the properties of Cu-50 % Cr composite. Powder Metall. Met. Ceram. 2009. 48(3-4): 211. https://doi.org/10.1007/s11106-009-9108-9
Kozak A.O., Ivashchenko V.I., Porada O.K., Ivashchenko L.A., Tomila T.V., Manjara V.S., Klishevych G.V. Structural, optoelectronic and mechanical properties of PECVD Si-C-N films: An effect of substrate bias. Mater. Sci. Semicond. Process. 2018. 88: 65. https://doi.org/10.1016/j.mssp.2018.07.023
Semchuk O.Y., Biliuk A.A., Havryliuk O.O. The Kinetic Theory of the Width of Surface Plasmon Resonance Line in Metal Nanoparticles. Springer Proceedings in Physics. 2021. 264: 3. https://doi.org/10.1016/j.apsadv.2021.100057
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Olifan E.I. First-principles study of phase stability of stoichiometric vanadium nitrides. Phys. Rev. B. 2011. 84(17): 174108. https://doi.org/10.1103/PhysRevB.84.174108
Baglyuk G.A., Terekhov V.N., Ternovoi Y.F. Structure and properties of powder austenitic die steels. Powder Metall. Met. Ceram. 2006. 45(7-8): 317. https://doi.org/10.1007/s11106-006-0083-0
Tolochyn O.I., Baglyuk G.A., Tolochyna O.V., Evych Y.I., Podrezov Y.M., Molchanovska H.M. Structure and Physicomechanical Properties of the Fe3Al Intermetallic Compound Obtained by Impact Hot Compaction. Mater. Sci. 2021. 56(4): 499. https://doi.org/10.1007/s11003-021-00456-y
Ivashchenko V.I., Vepřek S. First-principles molecular dynamics study of the thermal stability of the BN, AlN, SiC and SiN interfacial layers in TiN-based heterostructures: Comparison with experiments. Thin Solid Films. 2013. 545: 391. https://doi.org/10.1016/j.tsf.2013.08.047
Zaginaichenko S.Y., Lysenko E.A., Golovchenko T.N., Javadov N.F. The forming peculiarities of C60 molecule. NATO Science for Peace and Security Series C: Environmental Security. 2008. Part F2: 53.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Yu., Zolotarenko An.D., Shchur D.V., Matysina Z.A., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Comparative Analysis of Products of the Fullerenes' and Carbon-Nanostructures' Synthesis Using the SIGE and FGDG-7 Grades of Graphite. Nanosystems, Nanomaterials, Nanotechnologies. 2022. 20(3): 725.
Gun'ko V.M., Turov V.V., Zarko V.I., Prykhod'ko G.P., KrupskaT.V., Golovan A.P., Skubiszewska-Zięba J., Charmas B., Kartel M.T. Unusual interfacial phenomena at a surface of fullerite and carbon nanotubes. Chem. Phys. 2015. 459: 172. https://doi.org/10.1016/j.chemphys.2015.08.016
Nishchenko M.M., Likhtorovich S.P., Dubovoy A.G., Rashevskaya T.A. Positron annihilation in C60 fullerites and fullerene-like nanovoids. Carbon. 2003. 41(7): 1381. https://doi.org/10.1016/S0008-6223(03)00065-4
Lad'yanov V.I., Nikonova R.M., Larionova N.S., Aksenova V.V., Mukhgalin V.V., Rud' A.D. Deformation-induced changes in the structure of fullerites C60/70 during their mechanical activation. Phys. Solid State. 2013. 55(6): 1319. https://doi.org/10.1134/S1063783413060206
Matysina Z.A., Zolotarenko Ol.D., Rudakova O.P., Akhanova N.Y., Pomytkin A.P., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V. Iron in Endometallofullerenes. Prog. Phys. Met. 2022. 23(3): 510.
Sementsov Yu.I., Cherniuk O.A., Zhuravskyi S.V., Bo W., Voitko K.V., Bakalinska O.M., Kartel M.T. Synthesis and catalytic properties of nitrogen-containing carbon nanotubes. Him. Fiz. Tehnol. Poverhni. 2021. 12(2): 135. https://doi.org/10.15407/hftp12.02.135
Ushakova L.M., Ivanenko K.I., Sigareva N.V., Terets M.I., Kartel M.T., Sementsov Yu.I. Influence of nanofiller on the structure and properties of macromolecular compounds. Phys. Chem. Solid State. 2022. 23(2): 394. https://doi.org/10.15330/pcss.23.2.394-400
Sementsov Y., Prikhod'ko G., Kartel M., Tsebrenko M., Aleksyeyeva T., Ulyanchychi N. Carbon nanotubes filled composite materials. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 183. https://doi.org/10.1007/978-94-007-0899-0_16
Harea E., Stoček R., Storozhuk L., Sementsov Y., Kartel N. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers. Appl. Nanosci. 2019. 9(5): 899. https://doi.org/10.1007/s13204-018-0797-6
Schur D.V., Dubovoy A.G., Zaginaichenko S.Yu., Adejev V.M., Kotko A.V., Bogolepov V.A., Savenko A.F., Zolotarenko A.D., Firstov S.A., Skorokhod V.V. Synthesis of carbon nanostructures in gaseous and liquid medium. NATO Security through Science Series A: Chemistry and Biology. 2007: 199. https://doi.org/10.1007/978-1-4020-5514-0_25
Zaginaichenko S.Y., Matysina Z.A. The peculiarities of carbon interaction with catalysts during the synthesis of carbon nanomaterials. Carbon. 2003. 41(7): 1349. https://doi.org/10.1016/S0008-6223(03)00059-9
Rud A.D., Kiryan I.M. Quantitative analysis of the local atomic structure in disordered carbon. J. Non-Cryst. Solids. 2014. 386: 1. https://doi.org/10.1016/j.jnoncrysol.2013.11.010
Matvienko Y., Rud A., Polishchuk S., ZagorodniyY., Rud N., Trachevski V. Effect of graphite additives on solid-state reactions in eutectic Al-Cu powder mixtures during high-energy ball milling. Appl. Nanosci. 2020. 10(8): 2803. https://doi.org/10.1007/s13204-019-01086-2
Kartel M.T., Voitko K.V., Grebelna Y.V., Zhuravskyi S.V., Ivanenko K.O., Kulyk T.V., Makhno S.M., Sementsov Y.I. Changes in the structure and properties of graphene oxide surfaces during reduction and modification. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 179. https://doi.org/10.15407/hftp13.02.179
Boguslavskii L.Z., Rud' A.D., Kir'yan I.M., Nazarova N.S., Vinnichenko D.V. Properties of carbon nanomaterials produced from gaseous raw materials using high-frequency electrodischarge processing. Surf. Eng. Appl. Electrochem. 2015. 51(2): 105. https://doi.org/10.3103/S1068375515020027
Matysina Z.A. , Zolotarenko Ol.D. , Ualkhanova M., Rudakova O.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko O.D., Chymbai M.V., Zagorulko I.V. Electric Arc Methods to Synthesize Carbon Nanostructures. Prog. Phys. Met. 2022. 23(3): 528.
Yakymchuk O.M., Perepelytsina O.M., Rud A.D., Kirian I.M., Sydorenko M.V. Impact of carbon nanomaterials on the formation of multicellular spheroids by tumor cells. Phys. Status Solidi A. 2014. 211(12): 2778. https://doi.org/10.1002/pssa.201431358
Kartel N.T., Gerasimenko N.V., Tsyba N.N., Nikolaichuk A.D., Kovtun G.A. Synthesis and study of carbon sorbent prepared from polyethylene terephthalate. Russ. J. Appl. Chem. 2001. 74(10): 1765. https://doi.org/10.1023/A:1014894211046
Zolotarenko Ol.D, Ualkhanova M.N., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Havryliuk O.O. Advantage sand disadvantages of electric arc methods for thes ynthesis of carbon nanostructures. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 209. [in Ukrainian].
Oreshkin V.I., Chaikovskii S.A., Labetskaya N.A., Ivanov Y.F., Khishchenko K.V., Levashov P.R., Kuskova N.I., Rud' A.D. Phase transformations of carbon under extreme energy action. Tech. Phys. 2012. 57(2): 198. https://doi.org/10.1134/S106378421202017X
Rud A.D., Lakhnik A.M., Mikhailova S.S., Karban O.V., Surnin D.V., Gilmutdinov F.Z. Structure of Mg-C nanocomposites produced by mechano-chemical synthesis. J. Alloys Compd. 2011. 509(SUPPL. 2): S592. https://doi.org/10.1016/j.jallcom.2010.10.155
Karachevtseva L., Kartel M., Kladko V., Gudymenko O., Bo W., Bratus V., Lytvynenko O., Onyshchenko V., Stronska O. Functionalization of 2D macroporous silicon under the high-pressure oxidation. Appl. Surf. Sci. 2018. 434: 142. https://doi.org/10.1016/j.apsusc.2017.10.029
Kozak A.O., Porada O.K., Ivashchenko V.I., Ivashchenko L.A., Scrynskyy P.L., Tomila T.V., Manzhara V.S. Comparative investigation of Si-C-N Films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering. Appl. Surf. Sci. 2017. 425: 646. https://doi.org/10.1016/j.apsusc.2017.06.332
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I. Simulations of indentation-induced phase transformations in crystalline and amorphous silicon. Phys. Rev. B. 2008. 78(3): 035205. https://doi.org/10.1103/PhysRevB.78.035205
Krupskaya T.V., Turov V.V., Barvinchenko V.M., Filatova K.O., Suvorova L.A., Iraci G., Kartel M.T. Influence of the "wetting-drying" compaction on the adsorptive characteristics of nanosilica A-300. Adsorpt. Sci. Technol. 2018. 36(1-2): 300. https://doi.org/10.1177/0263617417691768
Gun'ko V.M., Turov V.V., Pakhlov E.M., Matkovsky A.K., Krupska T.V., Kartel M.T., Charmas B. Blends of amorphous/crystalline nanoalumina and hydrophobic amorphous nanosilica. J. Non-Cryst. Solids. 2018. 500: 351. https://doi.org/10.1016/j.jnoncrysol.2018.08.020
Barany S., Kartel' N., Meszaros R. Electrokinetic potential of multilayer carbon nanotubes in aqueous solutions of electrolytes and surfactants. Colloid J. 2014. 76(5): 509. https://doi.org/10.1134/S1061933X14050020
Gun'ko V.M., Turov V.V., Krupska T.V., Protsak I.S., Borysenko M.V., Pakhlov E.M. Polymethylsiloxane alone and in composition with nanosilica under various conditions. J. Colloid Interface Sci. 2019. 541: 213. https://doi.org/10.1016/j.jcis.2019.01.102
Biliuk A.A., Semchuk O.Y., Havryliuk O.O. Kinetic theory of absorption of ultrashort laser pulses by ensembles of metallic nanoparticles under conditions of surface plasmon resonance. Him. Fiz. Tehnol. Poverhni. 2022. 13(2): 556. https://doi.org/10.15407/hftp13.02.190
Gun'ko V.M., Turov V.V., Krupska, T.V., Pakhlov E.M. Behavior of water and methane bound to hydrophilic and hydrophobic nanosilicas and their mixture. Chem. Phys. Lett. 2017. 690: 25. https://doi.org/10.1016/j.cplett.2017.10.039
Gun'ko V.M., Turov V.V., Protsak I., Krupska T.V., Pakhlov E.M., Zhang D. Interfacial phenomena in composites with nanostructured succinic acid bound to hydrophilic and hydrophobic nanosilicas. Colloid Interface Sci. Commun. 2020. 35: 100251. https://doi.org/10.1016/j.colcom.2020.100251
Protsak I., Gun'ko V.M., Turov V.V., Krupska T.V., Pakhlov E.M., Zhang D., Dong W., Le Z. Nanostructured polymethylsiloxane/fumed silica blends. Mater. 2019. 12(15): 2409. https://doi.org/10.3390/ma12152409
Turov V.V., Gun'ko V.M., Krupska T.V., Borysenko M.V., Kartel M.T. Interfacial behavior of polar and nonpolar frozen/unfrozen liquids interacting with hydrophilic and hydrophobic nanosilicas alone and in blends. J. Colloid Interface Sci. 2021. 588: 70. https://doi.org/10.1016/j.jcis.2020.12.065
Pylypova O., Havryliuk O., Antonin S., Evtukh A., Skryshevsky V., Ivanov I., Shmahlii S. Influence of nanostructure geometry on light trapping in solar cells. Appl. Nanosci. 2022. 12(3): 769. https://doi.org/10.1007/s13204-021-01699-6
Semchuk O.Y., Biliuk A.A., Havryliuk O.O., Biliuk A.I. Kinetic theory of electroconductivity of metal nanoparticles in the condition of surface plasmon resonance. Appl. Surf. Sci. Adv. 2021. 3: 100057. https://doi.org/10.1016/j.apsadv.2021.100057
Havryliuk O.O., Evtukh A.A., Pylypova O.V., Semchuk O.Y., Ivanov I.I., Zabolotnyi V.F. Plasmonic enhancement of light to improve the parameters of solar cells. Appl. Nanosci. 2020. 10(12): 4759. https://doi.org/10.1007/s13204-020-01299-w
Zolotarenko O.D., Rudakova E.P., Zolotarenko A.D., Akhanova N.Y., Ualkhanova M.N., Shchur D.V., Gabdullin M.T., Gavrylyuk N.A., Myronenko T.V., Zolotarenko A.D., Chymbai M.V., Zagorulko I.V., Tarasenko Yu.O., Havryliuk O.O. Platinum-containing carbon nanostructures for the creation of electrically conductive ceramics using 3D printing of CJP technology. Him. Fiz. Tehnol. Poverhni. 2022. 13(3): 259.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Sultangazina M., Gavrylyuk N.A., Chymbai M.V., Zolotarenko A.D., Zagorulko I.V., Tarasenko Yu.O. Plasmochemical Synthesis of Platinum-Containing Carbon Nanostructures Suitable for CJP 3D-Printing. Metallophysics and Advanced Technologies. 2022. 44(3): 343.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Myronenko T.V., Zagorulko I.V., Zolotarenko A.D., Havryliuk O.O. Electrically conductive composites based on TiO2 and carbon nanostructures manufactured using 3D printing of CJP technology. Him. Fiz. Tehnol. Poverhni. 2022. 13(4): 415.
Zolotarenko Ol.D., Rudakova E.P., Akhanova N.Y., Zolotarenko An.D., Shchur D.V., Gabdullin M.T., Ualkhanova M., Gavrylyuk N.A., Chymbai M.V., Tarasenko Yu.O., Zagorulko I.V., Zolotarenko A.D. Electric Conductive Composites Based on Metal Oxides and Carbon Nanostructures. Metallophysics and Advanced Technologies. 2021. 43(10): 1417.
Stavitskaya S.S., Mironyuk T.I., Kartel M.T., Strelko V.V. Sorption characteristics of "food fibers" in secondary products of processing of vegetable raw materials. Russ. J. Appl. Chem. 2001. 74(4): 592. https://doi.org/10.1023/A:1012706531317
Zakutevskii O.I., Psareva T.S., Strelko V.V., Kartel M.T. Sorption of U(VI) from aqueous solutions with carbon sorbents. Radiochemistry. 2007. 49(1): 67. https://doi.org/10.1134/S1066362207010110
Kartel M., Galysh V. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 2017. 12(1): 37. https://doi.org/10.19261/cjm.2017.401
Gun'ko V.M., Turov V.V., Protsak I.S., Krupska T.V., Pakhlov E.M., Tsapko M.D. Effects of pre-adsorbed water on methane adsorption onto blends with hydrophobic and hydrophilic nanosilicas. Colloids Surf A. 2019. 570: 471. https://doi.org/10.1016/j.colsurfa.2019.03.056
Galysh V., Sevastyanova O., Kartel M., Lindström M.E., Gornikov Y. Impact of ferrocyanide salts on the thermo-oxidative degradation of lignocellulosic sorbents. J. Therm. Anal. Calorim. 2017. 128(2): 1019. https://doi.org/10.1007/s10973-016-5984-7
Ivashchenko V.I., Turchi P.E.A., Shevchenko V.I., Ivashchenko L.A., Rusakov G.V. Atomic and electronic structures of a-SiC:H from tight-binding molecular dynamics. J. Phys.: Condens. Matter. 2003. 15(24): 4119. https://doi.org/10.1088/0953-8984/15/24/305
Gabdullin M.T., Khamitova K.K., Ismailov D.V., Sultangazina M.N., Kerimbekov D.S., Yegemova S.S., Chernoshtan A., Schur D.V. Use of nanostructured materials for the sorption of heavy metals ions. IOP Conf. Ser.: Mater. Sci. Eng. 2019. 511(1): 12044. https://doi.org/10.1088/1757-899X/511/1/012044
Gun'ko V.M., Lupascu T., Krupska T.V., Golovan A.P., Pakhlov E.M., Turov V.V. Influence of tannin on aqueous layers at a surface of hydrophilic and hydrophobic nanosilicas. Colloids Surf. A. 2017. 531: 9. https://doi.org/10.1016/j.colsurfa.2017.07.084
Sementsov Yu.I., Prikhod'ko G.P., Melezhik A.V., Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. In: Nanomaterials and Supramolecular Structures. 2010. P. 347. https://doi.org/10.1007/978-90-481-2309-4_27
Khamitova K.K., Kayupov B.A., Yegemova S.S., Gabdullin M.T., Abdullin Kh.A., Ismailov D.V., Kerimbekov D.S. The use of fullerenes as a biologically active molecule. Int. J. Nanotechnol. 2019. 16(1-3): 100. https://doi.org/10.1504/IJNT.2019.102396
Gun'ko V.M., Turov V.V., KrupskaT.V., Tsapko M.D. Interactions of human serum albumin with doxorubicin in different media. Chem. Phys. 2017. 483-484: 26. https://doi.org/10.1016/j.chemphys.2016.11.007
Krupska T.V., Turova A.A., Un'Ko V.M., Turov V.V. Influence of highly dispersed materials on physiological activity of yeast cells. Biopolymers and Cell. 2009. 25(4): 290. https://doi.org/10.7124/bc.0007E8
Savenko A.F., Bogolepov V.A., Meleshevich K.A., Zaginaichenko S.Yu., Lototsky M.V., Pishuk V.K., Teslenko L.O., Skorokhod V.V. Structural and methodical features of the installation for the investigations of hydrogen-sorption characteristics of carbon nanomaterials and their composites. NATO Security through Science Series A: Chemistry and Biology. 2007: 365. https://doi.org/10.1007/978-1-4020-5514-0_47
Zaginaichenko S., Nejat Veziroglu T. Peculiarities of hydrogenation of pentatomic carbon molecules in the frame of fullerene molecule C60. Int. J. Hydrogen Energy. 2008. 33(13): 3330. https://doi.org/10.1016/j.ijhydene.2008.03.064
Zaginaichenko S.Yu., Veziroglu T.N., Lototsky M.V., Bogolepov V.A., Savenko A.F. Experimental set-up for investigations of hydrogen-sorption characteristics of carbon nanomaterials. Int. J. Hydrogen Energy. 2016. 41(1): 401. https://doi.org/10.1016/j.ijhydene.2015.08.087
Lakhnik A.M., Kirian I.M., Rud A.D. The Mg/MAX-phase composite for hydrogen storage. Int. J. Hydrogen Energy. 2022. 47(11): 7274. https://doi.org/10.1016/j.ijhydene.2021.02.081
Schur D.V., Zaginaichenko S.Y., Savenko A.F., Bogolepov V.A., Anikina N.S., Zolotarenko A.D., Matysina Z.A., Veziroglu T.N., Skryabina N.E. Hydrogenation of fullerite C60 in gaseous phase. NATO Science for Peace and Security Series C: Environmental Security. 2011. 2: 87. https://doi.org/10.1007/978-94-007-0899-0_7
Matysina Z.A. Phase transformations α → β → γ → δ → ε in titanium hydride tihx with increase in hydrogen concentration. Russ. Phys. J. 2001. 44(11): 1237. https://doi.org/10.1023/A:1015318110874
Lyashenko A.A., Adejev V.M., Voitovich V.B., Zaginaichenko S.Yu. Niobium as a construction material for a hydrogen energy system. Int. J. Hydrogen Energy. 1995. 20(5): 405. https://doi.org/10.1016/0360-3199(94)00077-D
Lavrenko V.A., Adejev V.M., Kirjakova I.E. Studies of the hydride formation mechanism in metals. Int. J. Hydrogen Energy. 1994. 19(3): 265. https://doi.org/10.1016/0360-3199(94)90096-5
Zaginaichenko S.Y., Matysina Z.A., Teslenko L.O., Veziroglu A. The structural vacancies in palladium hydride. Phase diagram. Int. J. Hydrogen Energy. 2011. 36(1): 1152. https://doi.org/10.1016/j.ijhydene.2010.06.088
Bogolepov V.A., Veziroglu A., Zaginaichenko S.Y., Savenko A.F., Meleshevich K.A. Selection of the hydrogen-sorbing material for hydrogen accumulators. Int. J. Hydrogen Energy. 2016. 41(3): 1811. https://doi.org/10.1016/j.ijhydene.2015.10.011
Shchur D.V., Zaginaichenk S.Y., Veziroglu A., Veziroglu T.N., Gavrylyuk N.A., Zolotarenko A.D., Gabdulli M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Prospects of Producing Hydrogen-Ammonia Fuel Based on Lithium Aluminum Amide. Russ. Phys. J. 2021. 64(1): 89. https://doi.org/10.1007/s11182-021-02304-7
Trefilov V.I., Pishuk V.K., Zaginaichenko S.Yu., Choba A.V., Nagornaya N.R. Solar furnaces for scientific and technological investigation. Renewable energy. 1999. 16(1-4 pt 2): 757. https://doi.org/10.1016/S0960-1481(98)00273-0
Matysina Z.A., Gavrylyuk N.A., Kartel M., Veziroglu A., Veziroglu T.N., Pomytkin A.P., Schur D.V., Ramazanov T.S., Gabdullin M.T., Zolotarenko A.D., Zolotarenko A.D., Shvachko N.A. Hydrogen sorption properties of new magnesium intermetallic compounds with MgSnCu4 type structure. Int. J. Hydrogen Energy. 2021. 46(50): 25520. https://doi.org/10.1016/j.ijhydene.2021.05.069
Matysina Z.A., Pogorelova O.S., Zaginaichenko S.Yu. The surface energy of crystalline CuZn and FeAl alloys. J. Phys. Chem. Solids. 1995. 56(1): 9. https://doi.org/10.1016/0022-3697(94)00106-5
Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Kolbaso G.Ya., Danilov M.O. Atomic structure and hydrogen storage properties of amorphous-quasicrystalline Zr-Cu-Ni-Al melt-spun ribbons. J. Non-Cryst. Solids. 2007. 353(32-40): 3434. https://doi.org/10.1016/j.jnoncrysol.2007.05.095
Matysina Z.A., Zaginaichenko S.Yu. Hydrogen solubility in alloys under pressure. Int. J. Hydrogen Energy. 1996. 21(11-12): 1085. https://doi.org/10.1016/S0360-3199(96)00050-X
Zaginaichenko S.Yu., Matysina Z.A., Smityukh I., Pishuk V.K. Hydrogen in lanthan-nickel storage alloys. J. Alloys Compd. 2002. 330-332: 70. https://doi.org/10.1016/S0925-8388(01)01661-9
Lytvynenko Yu.M. Utilization the concentrated solar energy for process of deformation of sheet metal. Renewable Energy. 1999. 16(1-4): 753. https://doi.org/10.1016/S0960-1481(98)00272-9
Matysina Z.A., Zaginaichenko S.Y. Sorption Properties of Iron-Magnesium and Nickel-Magnesium Mg2FeH6 and Mg2NiH4 Hydrides. Russ. Phys. J. 2016. 59(2): 177. https://doi.org/10.1007/s11182-016-0757-0
Rud A.D., Schmidt U., Zelinska G.M., Lakhnik A.M., Perekos A.E., Kolbasov G.Ya., Danilov M.O. Peculiarities of structural state and hydrogen storage properties of Ti-Zr-Ni based intermetallic compounds. J. Alloys Compd. 2005. 404-406(SPEC. ISS.): 515. https://doi.org/10.1016/j.jallcom.2004.12.174
Tikhotskii S.A., Fokin I.V. Traveltime seismic tomography with adaptive wavelet parameterization. Izvestiya Phys. Solid Earth. 2011. 47(4): 327. https://doi.org/10.1134/S1069351311030062
Zaginaichenko S.Y., Zaritskii D.A., Matysina Z.A., Veziroglu T.N., Kopylova L.I. Theoretical study of hydrogen-sorption properties of lithium and magnesium borocarbides. Int. J. Hydrogen Energy. 2015. 40(24): 7644. https://doi.org/10.1016/j.ijhydene.2015.01.089
Matysina Z.A., Zaginaichenko S.Y. Hydrogen-sorption properties of magnesium and its intermetallics with Ca7Ge-Type structure. Phys. Met. Metall. 2013. 114(4): 308. https://doi.org/10.1134/S0031918X13010079
Kryvoglaz M.A. Solubility in ordering alloys. Journal of Technical Physics. 1954. 24: 1077.
Matysina Z.A., Zolonarenko An.D., Zolonarenko Al.D., Gavrylyuk N.A., Veziroglu A., Veziroglu T.N., Gabdullin M.T., Pomytkin A.P., Schur D.V. Features of the interaction of hydrogen with metals, alloys and compounds. (Hydrogen atoms in crystalline solids). (Kyiv: Publishing House "KIM", 2022).
Krivoglaz M.A., Smirnov A.A. Theory of ordered alloys. (Moscow: Fizmatgiz, 1958). [in Russian].
DOI: https://doi.org/10.15407/hftp14.02.210
Copyright (©) 2023 Z. A. Matysina, An. D. Zolotarenko, Ol. D. Zolotarenko, T. V. Myronenko, D. V. Schur, E. P. Rudakova, M. V. Chymbai, A. D. Zolotarenko, I. V. Zagorulko, O. O. Havryliuk
This work is licensed under a Creative Commons Attribution 4.0 International License.