Механічні, термоокисні та біорозкладні властивості композитів з епоксиуретанів і хімічно модифікованої конопляної костриці
DOI: https://doi.org/10.15407/hftp15.01.067
Анотація
Підсилені природними волокнами полімерні композити нині розглядають як привабливі дешеві, безпечні й екологічні матеріали. Головну проблему таких композитів, пов’язану з гідрофільністю рослинних волокон, можна успішно вирішити хімічним модифікуванням їхньої поверхні. Однак, після цього деякі характеристики матеріалів можуть погіршуватися. Зважаючи на це, метою дослідження є з'ясувати вплив хімічного модифікування наповнювача на термоокисну стабільність полімерних композитів, міцність на згин і на розрив, а також на здатність до біорозкладання. Новизною даної роботи є дослідження нових матеріалів на основі Si-вмісних епоксиуретанів і хімічно обробленої конопляної костриці (КК). Кострицю, яка є побічним продуктом конопляної промисловості з необхідністю раціональної утилізації, мерсеризували розчином натрій гідроксиду, а надалі функціоналізували епоксидованою соєвою олією (ЕСО) або 3-амінопропілтриетоксисиланом (АПС). Нативну та поверхнево оброблену КК використовували як підсилювач для двох типів органо-неорганічних епоксиуретанових матриць, виготовлених з натрій силікату, поліуретанового форполімера на основі поліізоціанату та рицинової олії, та дигліцидилового етеру бісфенолу-А (ДГЕБА) або ЕСО як епоксидної складової.
Функціоналізація КК зумовила поліпшення механічних властивостей композитів. Порівняно з відповідними матеріалами, які містять необроблений наповнювач, найбільше зростання міцності на згин (26 %) спостерігали для зразків з ЕСО-вмісним епоксиуретаном і силанізованою КК, тоді як найбільше зростання міцності на розрив (53 %) виявили для зразків з ДГЕБА-вмісним епоксиуретаном і КК, обробленою олією. Термоокисна стабільність також була вищою для композитів, підсилених функціоналізованою КК. При термічному розкладанні найкраще зарекомендували себе зразки з КК, обробленою АПС. Їхні значення T50% були до 68 °C вищими, ніж у композитів з немодифікованим наповнювачем. Водночас, зразки на основі КК, обробленої АПС або ЕСО, були найбільш стійкими до біорозкладання, про що можна зробити висновок з їхньої найменшої втрати маси під час тестування при закопуванні в ґрунт.
Ключові слова
Посилання
1. Mohanty A.K., Misra M., Drzal L.T. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos. Interfaces. 2001. 8(5): 313. https://doi.org/10.1163/156855401753255422
2. Monteiro S.N., Calado V., Rodriguez R.J.S., Margem F.M. Thermogravimetric behavior of natural fibers reinforced polymer composites - An overview. Mater. Sci. Eng. A. 2012. 557: 17. https://doi.org/10.1016/j.msea.2012.05.109
3. Mochane M.J., Mokhena T.C., Mokhothu T.H., Mtibe A., Sadiku E.R., Ray S.S., Ibrahim I.D., Daramola O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. eXPRESS Polym. Lett. 2019. 13(2): 159. https://doi.org/10.3144/expresspolymlett.2019.15
4. Luo H., Zhang C., Xiong G., Wan Y. Effects of alkali and alkali/silane treatments of corn fibers on mechanical and thermal properties of its composites with polylactic acid. Polym. Compos. 2016. 37(12): 3499. https://doi.org/10.1002/pc.23549
5. Valadez-Gonzalez A., Cervantes-Uc J.M., Olayo R., Herrera-Franco P.J. Chemical modification of heneque'n fibers with an organosilane coupling agent. Composites, Part B. 1999. 30(3): 321. https://doi.org/10.1016/S1359-8368(98)00055-9
6. Oh J.T., Hong J.H., Ahn Y., Kim H. Reliability improvement of hemp based bio-composite by surface modification. Fibers Polym. 2012. 13(6): 735. https://doi.org/10.1007/s12221-012-0735-2
7. Oushabi A., Hassani F.O., Abboud Y., Sair S., Tanane O., El Bouari A. Improvement of the interface bonding between date palm fibers and polymeric matrices using alkali-silane treatments. Int. J. Ind. Chem. 2018. 9(10): 335. https://doi.org/10.1007/s40090-018-0162-3
8. Rajesh G., Prasad A.V.R., Gupta A.V.S.S.K.S. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. J. Reinf. Plast. Compos. 2015. 34(12): 951. https://doi.org/10.1177/0731684415584784
9. Karthika M., Shaji N., Johnson A., Santhosh N.M., Gopakumar D.A., Thomas S. Biodegradation of composite materials. In: Bio monomers for green polymeric composite materials. (NY: John Wiley & Sons, Ltd., 2019). https://doi.org/10.1002/9781119301714.ch7
10. Azwa Z.N., Yousif B.F., Manalo A.C., Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 2013. 47: 424. https://doi.org/10.1016/j.matdes.2012.11.025
11. Mohanty A.K., Misra M., Drzal L.T. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Environmental Polymer Degradation. 2002. 10(1/2): 19.
12. Zhang K., Wang F., Liang W., Wang Z., Duan Z., Yang B. Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers. 2018. 10(6): 608. https://doi.org/10.3390/polym10060608
13. Le Moigne N., Otazaghine B., Corn S., Angellier-Coussy H., Bergeret A. Modification of the interface/interphase in natural fibre reinforced composites: Treatments and processes. In: Surfaces and Interfaces in Natural Fibre Reinforced Composites: Fundamentals, Modifications and Characterization. (Cham: Springer Cham, 2018). https://doi.org/10.1007/978-3-319-71410-3
14. Lu T., Jiang M., Jiang Z., Hui D., Wang Z., Zhou Z. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Composites, Part B. 2013. 51: 28. https://doi.org/10.1016/j.compositesb.2013.02.031
15. Abdelmouleh M., Boufi S., Belgacem M.N., Duarte A.P., Ben Salah A., Gandini A. Modification of cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. J. Appl. Polym. Sci. 2005. 98(3): 974. https://doi.org/10.1002/app.22133
16. Zhu J., Brington J., Zhu H., Abhyankar H. Effect of alkali, esterification and silane surface treatments on properties of flax fibers. J. Sci. Res. Rep. 2015. 4(1): 1. https://doi.org/10.9734/JSRR/2015/12347
17. Członka S., Stra˛kowska A., Kairyte A. The impact of hemp shives impregnated with selected plant oils on mechanical, thermal, and insulating properties of polyurethane composite foams. Materials. 2020. 13(21): 4709. https://doi.org/10.3390/ma13214709
18. Rachini A., Le Troedec M., Peyratout C., Smith A. Chemical modification of hemp fibers by silane coupling agents. J. Appl. Polym. Sci. 2012. 123(1): 601. https://doi.org/10.1002/app.34530
19. Singha A.S., Rana A.K. Effect of silane treatment on physicochemical properties of lignocellulosic C. indica fiber. J. Appl. Polym. Sci. 2012. 124(3): 2473. https://doi.org/10.1002/app.35256
20. Stevulova N., Estokova A., Cigasova J., Schwarzova I., Kacik F., Geffert A. Thermal degradation of natural and treated hemp hurds under air and nitrogen atmosphere. J. Therm. Anal. Calorim. 2017. 128(3): 1649. https://doi.org/10.1007/s10973-016-6044-z
21. Cuinat-Guerraz N., Dumont M.-J., Hubert P. Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Composites, Part A. 2016. 88: 140. https://doi.org/10.1016/j.compositesa.2016.05.018
22. Faria D.L., Júnior L.M., de Almeida Mesquita R.G, Júnior M.G., Pires N.J., Mendes L.M., Junior J.B.G. Production of castor oil-based polyurethane resin composites reinforced with coconut husk fibres. J. Polym. Res. 2020. 27: 249. https://doi.org/10.1007/s10965-020-02238-7
23. Godara S.S. Effect of chemical modification of fiber surface on natural fiber composites: a review. Mater. Today: Proc. 2019. 18(7): 3428. https://doi.org/10.1016/j.matpr.2019.07.270
24. Liu Y., Xie J., Wu N., Wang L., Ma Y., Tong J. Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol. Int. 2019. 131: 398. https://doi.org/10.1016/j.triboint.2018.11.004
25. Khan A., Huq T., Saha M., Khan R.A., Khan M.A. Surface modification of calcium alginate fibers with silane and methyl methacrylate monomers. J. Reinf. Plast. Compos. 2010. 29(20): 3125. https://doi.org/10.1177/0731684410367534
26. Yashchenko L.M., Yarova N.V., Vorontsova L.O., Brovko O.O. Physical-mechanical properties of polymer composites reinforced with hemp wood core. Voprosy khimii i khimicheskoi tekhnologi. 2020. 5: 104. [in Ukrainian]. https://doi.org/10.32434/0321-4095-2020-132-5-104-111
27. Broido A. A simple, sensitive graphical method of treating thermogravimetric analysis data. J. Polym. Sci. A2. 1969. 7(10): 1761. https://doi.org/10.1002/pol.1969.160071012
28. Chimeni D.Y., Toupe J.L., Rodrigue C.D.D. Effect of hemp surface modification on the morphological and tensile properties of linear medium density polyethylene (LMDPE) composites. Compos. Interface. 2016. 23(5): 405. https://doi.org/10.1080/09276440.2016.1144163
29. Gorbach L.A., Babkina N.V., Purikova O.G., Barantsova A.V., GrischenkoV.K., Brovko O.O. Physico-mechanical and viscoelastic properties of polymer compositions based on synthetic oligomer ED-20 and epoxidized soybean oil. Polymer J. 2021. 43(2): 95. [in Ukrainian]. https://doi.org/10.15407/polymerj.43.02.095
30. Yashchenko L.M., Yarova N.V., Samoilenko T.F., Brovko O.O. Bioepoxide matrices of anhydride curing for structure composites. Ukr. Chem. J. 2018. 84(11): 51. [in Ukrainian].
31. Chee S.S., Jawaid M., Sultan M.T.H., Alothman O.Y., Abdullah L.C. Accelerated weathering and soil burial effects on colour, biodegradability and thermal properties of bamboo/kenaf/epoxy hybrid composites. Polym. Test. 2019. 79: 106054. https://doi.org/10.1016/j.polymertesting.2019.106054
32. Ramamoorthy S.K., Skrifvars M., Rissanen M. Effect of alkali and silane surface treatments on regenerated cellulose fibre type (Lyocell) intended for composites. Cellulose. 2015. 22(1): 637. https://doi.org/10.1007/s10570-014-0526-6
33. Nageswara A., Sudher P., Brahman V. Micro silica effects on thermal and mechanical properties of silica-epoxy composites. J. Polym. Mater. 2010. 27(1): 87.
34. Yashchenko L.N., Todosiychuk T.T., Zapunnaya K.V., Krivchenko G.N., Thermal properties of modified epoxyurethanes. Polim. Zhurnal. 2007. 29(4): 253. [in Russian].
35. Oza S., Ning H., Ferguson I., Lu N. Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Composites, Part B. 2014. 67: 227. https://doi.org/10.1016/j.compositesb.2014.06.033
36. Nakajima-Kambe T., Shigeno-Akutsu Y., Nomura N., Onuma F., Nakahara T. Microbial degradation of polyurethane, polyester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biot. 1999. 51(2): 134. https://doi.org/10.1007/s002530051373
37. Batista K.C., Silva D.A.K., Coelho L.A.F., Pezzin S.H., Pezzin A.P.T. Soil biodegradation of PHBV/peach palm particles biocomposites. J. Polymer. Environ. 2010. 18: 346. https://doi.org/10.1007/s10924-010-0238-4
38. Pang A.L., Arsad A., Ahmadipour M., Ismail H., Bakar A.A. Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites. BioResources. 2020. 15(4): 8648. https://doi.org/10.15376/biores.15.4.8648-8661
39. Jacob M., Thomas S., Varughese K.T. Biodegradability and aging studies of hybrid biofiber reinforced natural rubber biocomposites. J. Biobased Mater. Bioenergy. 2007. 1(1): 118. https://doi.org/10.1166/jbmb.2007.013
DOI: https://doi.org/10.15407/hftp15.01.067
Copyright (©) 2024 T. F. Samoilenko, L. M. Yashchenko, N. V. Yarova, O. O. Leta, O. O. Brovko
This work is licensed under a Creative Commons Attribution 4.0 International License.