Хімія, фізика та технологія поверхні, 2011, 2 (1), 23-33.

Локалізація водню в поровому просторі активованого вугілля



V. V. Turov, V. M. Gun'ko, O. P. Kozynchenko, S. P. Tennison, S. V. Mikhalovski

Анотація


Методом низькотемпературної 1Н ЯМР-спектроскопії в квазіізобаричних умовах (Р=1,1·105 Па) вивчена адсорбція водню на активованих вугіллях (АУ), одержаних шляхом карбонізації пористих фенолформальдегідних смол з наступною активацією СО2 зі ступенем обгару 86% (АУ-86) і 47% (АУ-47). Показано, що адсорбція водню в порах АУ-86 з питомою поверхнею 3463 см2/г збільшується в п’ять разів із зростанням концентрації передадсорбованої води. У разі присутності в зразку 40 мг/г Н2О адсорбція водню досягає 1,4 мг/г при Т=200 К. Встановлено, що адсорбований водень, локалізований в щілиноподібних мікропорах в областях порового простору, для яких екрануючий ефект поверхні дорівнює нулю. Одержані результати пояснено з точки зору існування в щілиноподібних порах трьох мінімумів на перетині поверхні потенційної енергії адсорбції, два з яких розташовані у стінок пор (де екрануючий ефект поверхні великий), а третій – в середній частині пор (з екрануючим ефектом близьким до нуля). Всі адсорбати, крім водню (вода, насичені вуглеводні), локалізуються переважно біля стінок пор. З пониженням температури частина води може зміщуватися в середню область пор, що приводить до зменшення екрануючого ефекту поверхні. Адсорбований водень локалізований лише в середній частині пор в присутності ко-адсорбатів або в дуже вузьких порах, куди інші адсорбати не проникають.

Повний текст:

PDF (Русский)

Посилання


Dobrovolsky V.D., Ershova O.G., Solonin Yu.M. et al. A study of the hydrogen sorption properties, thermal stability and the character of the chemical bonds of Ho and Lu Me–H hydrides through the use of thermodesorption and X-ray absorption spectroscopy // J. Alloys Compd. – 2010. – V. 490, N 1–2. – P. 68–73.

Demircan A. Experimental and theoretical analysis of hydrogen absorption in LaNi5–H2 reactors // Int. J. Hydrogen Energy. – 2005. – V. 30, N 1–2. – P. 1437–1446.

Dhaou H., Souahlia A., Mellouli S. et.al. Experimental study of a metal hydride vessel based on a finned spiral heat exchanger // Int. J. Hydrogen Energy. – 2010. – V. 35, N 4. – P. 1674–1680.

Елецкий А.В. Сорбционные свойства углеродных наноструктур // Усп. физ. наук. – 2004. – Т. 174, № 11. – С. 1191–1231.

Нечаев Ю.С. О природе, кинетике и предельных значениях сорбции водорода углеродными наноструктурами // Усп. физ. наук. – 2006. – Т. 176, № 6. – С. 581–610.

Нечаев Ю.С., Алексеев О.К. Методологический, прикладной и термодинамический аспекты сорбции водорода графитом и родственными углеродными наноструктурами // Усп. химии. – 2004. – Т. 73, № 12. – С. 1309–1337.

Huang C-C., ChenH-M., Chen C-H. Hydrogen adsorption on modified activated carbon // Int. J. Hydrogen Energy. – 2010. – V. 35, N 7. – P. 2777–2780.

Rzepka M., Lamp P., de la Casa-Lillo M.A. Physisorption of hydrogen on microporous carbon and carbon nanotubes // J. Phys. Chem. B. – 1998. – V. 102, N 52. – P. 10894–10904.

Texier-Mandoki N., Dentzer J., Piquero T. et al. Hydrogen storage in activated carbon materials: role of the nanoporous texture // Carbon. – 2004. – V. 42, N 12–13. – P. 2744–2751.

Saha D., Deng S. Enhanced hydrogen adsorption in ordered mesoporous carbon through clathrate formation // Int. J. Hydrogen Energy. – 2009. – V. 34, N 20. – P. 8583–8588.

Фенелонов В.Б. Пористый углерод. – Новосибирск: ИК СО РАН, 1995. – 518 с.

Tabony J., White J.W., Delacheume J.C., Coulon M. Nuclear Magnetic Resonance Studies of the Magnetic and Orientation of Benzene Adsorption upon Graphite // Surf. Sci. Lett. – 1980. – V. 95, N 1–2. – P. 282–288.

Turov V.V., Leboda R. 1H NMR spectroscopy of adsorbed molecules and free surface energy of carbon adsorbents // Phys. Chem. Carbon. – 2000. – V. 27. – P. 67–124.

Turov V.V., Leboda R. 1H NMR chemical shifts of adsorbed molecules on the carbon surface // Adsorpt. Sci. Technol. – 1998. – V. 16, N 10. – P. 837–855.

Pat. 7842736 United States, Int. Cl. C08G8/04 Porous carbons / Tennison S.R., Kozynchenko O.P., Strelko V.V., Blackburn A.J. – Appl. No. 11/786072, Filed 10.04.2007, Publ. 30.11.2010. – 26 p

Gun’ko V.M., Turov V.V., Bogatyrev V.M. et al. Unusual properties of water at hydrophilic/hydrophobic Interfaces // Adv. Colloid Interface Sci. − 2005 − V. 118, N 1–3. − P. 125–172.

Гунько В.М., Туров В.В., Горбик П.П. Вода на межфазной границе. – Киев: Наукова думка, 2009. – 694 с.

Turov V.V., Leboda R. Application of 1H NMR Spectroscopy Method for Determination of Characteristics of Thin Layers of Water Adsorbed on the Surface of Dispersed and Porous Adsorbens // Adv. Colloid Interface Sci. – 1999. – V. 79, N 2–3. – P. 173–211.

Туров В.В., Гунько В.М., Хоменко К.Н. и др. Адсорбция водорода на силикалите в присутствии воды и бензола. – ЖФХ. – 2010. – т. 84. – с. 76–81.

Туров В.В., Гунько В.М., Пєтін А.Ю. та ін. Спільна адсорбція водню та води в наностуктурованих адсорбентах за даними 1Н ЯМР спектроскопії // Наносистеми, наноматеріали та нанотехнології. – 2010. – Т. 8, № 1. – С. 153–175.

Dubinin M.M. Generalization of the theory of volume filling of microporous to nonhomogeneous microporous structures // Carbon. – 1985. – V. 23, N. 4. – P. 373–380.

Petrov O.V., Furo I. NMR cryoporometry: Principles, application and potential // Prog. Nucl. Magn. Reson. Spectrosc. – 2009. – V. 54, N 2. – P. 97–122.




Copyright (©) 2011 V. V. Turov, V. M. Gun'ko, O. P. Kozynchenko, S. P. Tennison, S. V. Mikhalovski

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.