Комплекси кавової кислоти на поверхні оксиду алюмінію: ІЧ спектроскопія, TПД МС та DFT розрахунки
DOI: https://doi.org/10.15407/hftp15.03.429
Анотація
Кавова кислота є фенольною природною біологічно активною сполукою з вираженими антиоксидантними та антимікробними властивостями, яка має великий потенціал застосування в медицині і косметології, а також може використовуватися для отримання ряду інших корисних хімікатів. Тому дослідження, спрямовані на вдосконалення технологій вилучення кавової кислоти з рослинної сировини, а також її переробки, є актуальними. В нашій роботі вивчалися комплекси кавової кислоти з нанорозмірним Al2O3, який зазвичай застосовують в різних технологіях конверсії рослинної біомаси. Структуру та тип утворених комплексів СА досліджено за допомогою ІЧ-спектроскопії, температурно-програмованої десорбційної мас-спектрометрії (ТПД МС) та квантовохімічних методів. Аналіз отриманих ІЧ-спектрів свідчить, що СА може взаємодіяти з нанорозмірним оксидом алюмінію як карбоксильною так і фенольними групами. На основі розрахованих значень Dν встановлено, що карбоксилатні комплекси СА на поверхні Al2O3 можуть мати бідентатну та монодентатну структури. Аналіз мас-спектрометричних даних дозволив ідентифікувати сполуки 4-вінілкатехолу, пірокатехолу та фенолу, які є продуктами розкладу утворених карбоксилатних та фенольних комплексів. Виявлено, що на поверхні досліджених зразків СА/Al2O3 переважають хелатні комплекси СА, які утворюються за участі обох ОН-груп ароматичного кільця.
Ключові слова
Посилання
1. Stojković D., Petrović J., Soković M., Glamočlija J., Kukić‐Marković J., Petrović S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p‐coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013. 93(13): 3205. https://doi.org/10.1002/jsfa.6156
2. Zhaveh S., Mohsenifar A., Beiki M., Khalili St., Abdollahi A., Rahmani-Cherati T., Tabatabaei M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2015. 69: 251. https://doi.org/10.1016/j.indcrop.2015.02.028
3. Anwar J., Spanevello R.M., Thomé G., Stefanello N., Schmatz R., Gutierres, J., Vieira J., Jucimara Baldissarelli, Carvalho F.B., da Rosa M.M., Rubin M.A., Fiorenza A., Morsch V.M., Schetinger M.R.C. Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol. Biochem. Behav. 2012. 103(2): 386. https://doi.org/10.1016/j.pbb.2012.09.006
4. Khan F., Bamunuarachchi N.I., Tabassum, N., Kim Y.M. Caffeic acid and its derivatives: antimicrobial drugs toward microbial pathogens. J. Agric. Food Chem. 2021. 69(10): 2979. https://doi.org/10.1021/acs.jafc.0c07579
5. Lima V.N., Oliveira-Tintino C.D., Santos E.S., Morais L.P., Tintino S.R., Freitas T.S., Geraldo Y.S., Pereira R.L.S., Cruz R.P., Menezes I.R.A., Coutinho H.D. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathogen. 2016. 99: 56. https://doi.org/10.1016/j.micpath.2016.08.004
6. Russo G.I., Campisi D., Di Mauro M., Regis F., Reale G., Marranzano M., Morgia G. Dietary consumption of phenolic acids and prostate cancer: A case-control study in sicily, Southern Italy. Molecules. 2017. 22(12): 2159. https://doi.org/10.3390/molecules22122159
7. Muhammad Abdul Kadar N.N., Ahmad F., Teoh S.L., Yahaya M.F. Caffeic acid on metabolic syndrome: a review. Molecules. 2021. 26(18): 5490. https://doi.org/10.3390/molecules26185490
8. Clifford M.N. Chlorogenic acids and other cinnamates-nature, occurrence and dietary burden. J. Sci. Food Agric. 1999. 79(3): 362. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D
9. Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 2004. 79(5): 727. https://doi.org/10.1093/ajcn/79.5.727
10. Lattanzio V., Lattanzio V.M., Cardinali A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry: Advances in Research. 2006. 661(2): 23.
11. Qian S., Lu M., Zhou X., Sun S., Han Z., Song, H. Improvement in caffeic acid and ferulic acid extraction by oscillation-assisted mild hydrothermal pretreatment from sorghum straws. Bioresour. Technol. 2024. 396: 130442. https://doi.org/10.1016/j.biortech.2024.130442
12. Chandrasekar V., Martín‐González M.S., Hirst P., Ballard T.S. Optimizing Microwave‐Assisted Extraction of Phenolic Antioxidants from Red Delicious and Jonathan Apple Pomace. J. Food Process Eng. 2015. 38(6): 571. https://doi.org/10.1111/jfpe.12187
13. Bai X.L., Yue T.L., Yuan Y.H., Zhang H.W. Optimization of microwave‐assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 2010. 33(23-24): 3751. https://doi.org/10.1002/jssc.201000430
14. Zhang M., Wang D., Gao X., Yue Z., Zhou H. Exogenous caffeic acid and epicatechin enhance resistance against Botrytis cinerea through activation of the phenylpropanoid pathway in apples. Sci. Hortic. 2020. 268: 109348. https://doi.org/10.1016/j.scienta.2020.109348
15. Lee J., Chan B.L.S., Mitchell A.E. Identification/quantification of free and bound phenolic acids in peel and pulp of apples (Malus domestica) using high resolution mass spectrometry (HRMS). Food Chem. 2017. 215: 301. https://doi.org/10.1016/j.foodchem.2016.07.166
16. Casagrande M., Zanela J., Pereira D., de Lima V.A., Oldoni T.L.C., Carpes S.T. Optimization of the extraction of antioxidant phenolic compounds from grape pomace using response surface methodology. J. Food Meas. Charact. 2019. 13: 1120. https://doi.org/10.1007/s11694-018-00027-x
17. Tournour H.H., Segundo M.A., Magalhaes L.M., Barreiros L., Queiroz J., Cunha L.M. Valorization of grape pomace: Extraction of bioactive phenolics with antioxidant properties. Ind. Crops Prod. 2015. 74: 397. https://doi.org/10.1016/j.indcrop.2015.05.055
18. Otero-Pareja M.J., Casas L., Fernández-Ponce M.T., Mantell C., Martinez de la Ossa E.J. Green extraction of antioxidants from different varieties of red grape pomace. Molecules. 2015. 20(6): 9686. https://doi.org/10.3390/molecules20069686
19. Fracassetti D., Lawrence N., Tredoux A.G.J., Tirelli A., Nieuwoudt H.H., Du Toit W.J. Quantification of glutathione, catechin and caffeic acid in grape juice and wine by a novel ultra-performance liquid chromatography method. Food Chem. 2011. 128(4): 1136. https://doi.org/10.1016/j.foodchem.2011.04.001
20. Vorobyova V., Skiba M., Vasyliev G. Extraction of phenolic compounds from tomato pomace using choline chloride-based deep eutectic solvents. J. Food Meas. Charact. 2022. 16(2): 1087. https://doi.org/10.1007/s11694-021-01238-5
21. Farinon B., Felli M., Sulli M., Diretto G., Savatin D.V., Mazzucat A., Costantini L. Tomato pomace food waste from different variants as a high antioxidant potential resource. Food Chem. 2024. 452: 139509. https://doi.org/10.1016/j.foodchem.2024.139509
22. Hu M., Zhu G., Chen Y., Xie G., Zhu M., Lv T., Xu L. Enhanced co-pyrolysis of corn stalk and bio-tar into phenolic-rich biooil: Kinetic analysis and product distributions. J. Anal. Appl. Pyrolysis. 2024. 177: 106358. https://doi.org/10.1016/j.jaap.2024.106358
23. Pereira P.H., Maya D.M., Oliveira D.C., Ferreira A.F. From waste to resource: maximizing olive pomace valorization through advanced thermal treatment. Biomass Convers. Biorefin. 2024. 1-17. https://doi.org/10.1007/s13399-024-05456-x
24. Velvizhi G., Jacqueline P.J., Shetti N.P., Latha K., Mohanakrishna G., Aminabhavi T.M. Emerging trends and advances in valorization of lignocellulosic biomass to biofuels. J. Environ. Manag. 2023. 345: 118527. https://doi.org/10.1016/j.jenvman.2023.118527
25. Nastasiienko N., Kulik T., Palianytsia B., Larsson M., Kartel M. Microwave-assisted catalytic pyrolysis of ferulic acid, as a lignin model compound. J. Therm. Anal. Calorim. 2023. 148(12): 5485. https://doi.org/10.1007/s10973-023-12087-3
26. Sankaranarayanan S., Won W. Catalytic pyrolysis of biomass to produce bio‐oil using layered double hydroxides (LDH)‐derived materials. GCB Bioenergy. 2024. 16(3): e13124. https://doi.org/10.1111/gcbb.13124
27. Sarkar R., Laskar N., Saha A., Basak B.B. Green biorefinery for residual biomass from agriculture. In: Plant Biomass Applications. (Academic Press, 2024). https://doi.org/10.1016/B978-0-443-15465-2.00005-7
28. Fu W., Bai X., Tursun Y., Liu Q., Li B., Dai Z., Zhao Y., Li X., Guo L., Li J. Oxidative pyrolysis of plywood waste: Effect of oxygen concentration and other parameters on product yield and composition. J. Anal. Appl. Pyrolysis. 2023. 173: 106068. https://doi.org/10.1016/j.jaap.2023.106068
29. Chaabane A., Abderafi S., Abbassi M.A. Valorizing argan residues into biofuels and chemicals through slow pyrolysis. Results Eng. 2024. 21: 101659. https://doi.org/10.1016/j.rineng.2023.101659
30. Du J., Shen T., Hu J., Zhang F., Yang S., Liu H., Wang H. Study on thermochemical conversion of triglyceride biomass catalyzed by biochar catalyst. Energy. 2023. 277: 127733. https://doi.org/10.1016/j.energy.2023.127733
31. Tran M.H., Paramasivam P., Le H.C., Nguyen D.T. Biomass: A Versatile Resource for Biofuel, Industrial, and Environmental Solution. International Journal on Advanced Science, Engineering and Information Technology. 2024. 14(1): 17489. https://doi.org/10.18517/ijaseit.14.1.17489
32. Quintero-Naucil M., Salcedo-Mendoza J., Solarte-Toro J.C., Aristizábal-Marulanda V. Assessment and comparison of thermochemical pathways for the rice residues valorization: pyrolysis and gasification. Environ. Sci. Pollut. Res. 2024. 1. https://doi.org/10.1007/s11356-024-32241-0
33. Wang B., Chen Y., Chen W., Hu J., Chang C., Pang S., Li P. Enhancement of aromatics and syngas production by co-pyrolysis of biomass and plastic waste using biochar-based catalysts in microwave field. Energy. 2024. 293: 130711. https://doi.org/10.1016/j.energy.2024.130711
34. Len T., Bressi V., Balu A.M., Kulik T., Korchuganova O., Palianytsia B., Esprob C., Luque R. Thermokinetics of production of biochar from crop residues: an overview. Green Chem. 2022. 24(20): 7801. https://doi.org/10.1039/D2GC02631G
35. Yefremova S., Zharmenov A., Sukharnikov Y., Bunchuk L., Kablanbekov A., Anarbekov K., Kulik T., Nikolaichuk A., Palianytsia B. Rice husk hydrolytic lignin transformation in carbonization process. Molecules. 2019. 24(17): 3075.https://doi.org/10.3390/molecules24173075
36. Shafizadeh A., Rastegari H., Shahbeik H., Mobli H., Pan J., Peng W., Li G., Tabatabaei M., Aghbashlo M. A critical review of the use of nanomaterials in the biomass pyrolysis process. J. Cleaner Prod. 2023. 400: 136705. https://doi.org/10.1016/j.jclepro.2023.136705
37. Hu M., Zhu G., Chen Y., Xie G., Zhu M., Lv,T., Xu L. Enhanced co-pyrolysis of corn stalk and bio-tar into phenolic-rich biooil: Kinetic analysis and product distributions. J. Anal. Appl. Pyrolysis. 2024. 177: 106358. https://doi.org/10.1016/j.jaap.2024.106358
38. Liu W., Liu B., Zhang Y., Yi B., Hu H., Fan Q., Liu H. Evolution of Pyrolysis Characteristics and Gas Components of Biochar Prepared by Either Mixing or Layering Rice Husk with Inert Aluminum Oxide. BioResources. 2023. 18(1). 10. https://doi.org/10.15376/biores.18.1.1699-1713
39. Pryhunova O., Dyachenko A., Ischenko O., Diuyk V., Goncharuk O., Oranska O., Bonarowska M. NiFe (CoFe)/silica and NiFe (CoFe)/alumina nanocomposites for the catalytic hydrogenation of CO2. Appl. Nanosci. 2023. 13(10): 6829. https://doi.org/10.1007/s13204-023-02781-x
40. Qasemi Z., Jafari D., Jafari K., Esmaeili H. Heterogeneous aluminum oxide/calcium oxide catalyzed transesterification of Mespilus germanica triglyceride for biodiesel production. Environ. Prog. Sustainable Energy. 2022. 41(2): e13738. https://doi.org/10.1002/ep.13738
41. Sharanda L.F., Shimansky A.P., Kulik T.V., Chuiko A.A. Study of acid-base surface properties of pyrogenic γ-aluminium oxide. Colloids Surfaces A. 1995. 105(2-3): 167. https://doi.org/10.1016/0927-7757(95)03265-7
42. Kulik T., Palianytsia B., Larsson M. Catalytic pyrolysis of aliphatic carboxylic acids into symmetric ketones over ceria-based catalysts: kinetics, isotope effect and mechanism. Catalysts. 2020. 10(2): 179. https://doi.org/10.3390/catal10020179
43. Chai J.D., Head-Gordon M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008. 10: 6615. https://doi.org/10.1039/b810189b
44. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J.Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010.
45. Podolyan Y., Leszczynski J. MaSK: A visualization tool for teaching and research in computational chemistry. Int. J. Quantum Chem. 2009. 109: 8. https://doi.org/10.1002/qua.21662
46. Kulik T., Nastasiienko N., Palianytsia B., Ilchenko M., Larsso M. Catalytic Pyrolysis of Lignin Model Compound (Ferulic Acid) over Alumina: Surface Complexes, Kinetics, and Mechanisms. Catalysts. 2021. 11: 1508. https://doi.org/10.3390/catal11121508
47. 'Swisłocka R. Spectroscopic (FT-IR, FT-Raman, UV absorption,1H and 13 C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta, Part A. 2013. 100: 21. https://doi.org/10.1016/j.saa.2012.01.048
48. Kulyk K, Palianytsia B., Alexander J.D., Azizova L., Borysenko M., Kartel M., Larsson M., Kulik T. Kinetics of valeric acid ketonization and ketenization in catalytic pyrolysis on nanosized SiO2, γ-Al2O3, CeO2/SiO2, Al2O3/SiO2 and TiO2/SiO2. Chem. Phys. Chem. 2017. 18: 1943. https://doi.org/10.1002/cphc.201601370
49. Palacios E.G., Juares-Lopes G., Monhemius A.J. Infrared spectroscopy of metal carboxylates: II. Analysis of Fe(III), Ni and Zn carboxylate solutions. Hydrometallurgy. 2004. 72: 139. https://doi.org/10.1016/S0304-386X(03)00137-3
50. Azizova L.R., Kulik T.V., Palianytsia B.B., Ilchenko M.M., Telbiz G.M., Balu A.M., Tarnavskiy S., Luque R., Roldan A., Kartel M.T. The Role of Surface Complexes in Ketene Formation from Fatty Acids via Pyrolysis over Silica: from Platform Molecules to Waste Biomass. J. Am. Chem. Soc. 2023. 145(49): 26592. https://doi.org/10.1021/jacs.3c06966
51. Bellamy L. Infra-Red Spectra of Complex Molecule. (London: Methuen & Co LTD, 1963).
52. Nakanishi K. Infrared Adsorption Spectroscopy (Practical). (San Francisco: Holden Day. Inc. 1962).
53. Nastasiienko N., Palianytsia B., Kartel M., Larsson M., Kulik T. Thermal transformation of caffeic acid on the nanoceria surface studied by temperature programmed desorption mass-spectrometry, thermogravimetric analysis and ft-ir spectroscopy. Colloids Interfaces. 2019. 3(1): 34. https://doi.org/10.3390/colloids3010034
54. Nastasiienko N., Kulik T., Palianytsia B., Laskin J., Cherniavska T., Kartel M., Larsson M. Catalytic pyrolysis of lignin model compounds (Pyrocatechol, guaiacol, vanillic and ferulic acids) over nanoceria catalyst for biomass conversion. Appl. Sci. 2021. 11(16): 7205. https://doi.org/10.3390/app11167205
55. González-Baró A.C., Parajón-Costa B.S., Franca C.A., Pis-Diez R. Theoretical and spectroscopic study of vanillic acid. J. Mol. Struct. 2008. 889(1-3): 204. https://doi.org/10.1016/j.molstruc.2008.01.049
56. Kalinowska M., Piekut J., Bruss A., Follet C., Sienkiewicz-Gromiuk J., Świsłocka R., Rzączyńska Z., Lewandowski W. Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), Thermogravimetric and Antimicrobial Studies of Ca (II), Mn (II), Cu (II), Zn (II) and Cd (II) Complexes of Ferulic Acid. Spectrochim. Acta, Part A. 2014. 122: 631. https://doi.org/10.1016/j.saa.2013.11.089
57. Sebastian S., Sundaraganesan N., Manoharan S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study. Spectrochim. Acta, Part A. 2009. 74(2): 312. https://doi.org/10.1016/j.saa.2009.06.011
58. Huang W., Jiang P., Wei C., Zhuang D., Shi J. Low-temperature one-step synthesis of covalently chelated ZnO/dopamine hybrid nanoparticles and their optical properties. J. Mater. Res. 2008. 23: 1946. https://doi.org/10.1557/JMR.2008.0243
59. Hachani R., Lowdell M., Birchall M., Hervault A., Mertz D., Begin-Colin S., Thanh N.T.K. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale. 2016. 8: 3278. https://doi.org/10.1039/C5NR03867G
60. Togashi T., Naka T., Asahina S., Sato K., Takami S., Adschiri T. Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Trans. 2011. 40: 1073. https://doi.org/10.1039/C0DT01280G
61. Nastasiienko N., Kulik T., Palianytsia B., Larsson M., Cherniavska T., Kartel M. Decarboxylation of p-Coumaric Acid during Pyrolysis on the Nanoceria Surface. Colloids Interfaces. 2021. 5(4): 48. https://doi.org/10.3390/colloids5040048
62. Kulik T.V., Barvinchenko V.N., Palyanytsya B.B., Lipkovska N.A., Dudik O.O. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation. J. Anal. Appl. Pyrolysis. 2011. 90(2): 219. https://doi.org/10.1016/j.jaap.2010.12.012
63. Ota A., Abramovič H., Abram V., Ulrih N.P. Interactions of p-coumaric, caffeic and ferulic acids and their styrenes with model lipid membranes. Food Chemistry. 2011. 125(4): 1256. https://doi.org/10.1016/j.foodchem.2010.10.054
64. Dei A., Gatteschi D., Sangregorio C., Sorace L. Quinonoid metal complexes: Toward molecular switches. Acc. Chem. Res. 2004. 37(11): 827. https://doi.org/10.1021/ar0200706
65. Singh V., Naka T., Takami S., Sahraneshin A., Togashi T., Aoki N., Adschiri T. Hydrothermal synthesis of inorganic-organichybrid gadolinium hydroxide nanoclusters with controlled size and morphology. Dalton Trans. 2013. 42: 16176. https://doi.org/10.1039/c3dt51692j
DOI: https://doi.org/10.15407/hftp15.03.429
Copyright (©) 2024 N. S. Nastasiienko, T. V. Kulik, M. M. Ilchenko, B. B. Palianytsia, A. I. Nastasiienko, G. Shaw, P. R. Davies, D. Wass, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.