Хімія, фізика та технологія поверхні, 2024, 15 (4), 514-523.

Синтез та застосування поліакриламідних гідрогелів з інкорпорованим кислотно-активованим Laponite® для діагностики онкологічних захворювань



DOI: https://doi.org/10.15407/hftp15.04.514

Yu. M. Samchenko, O. A. Samoylenko, A. V. Verbinenko, I. I. Ganusevich, L. O. Kernosenko, T. P. Poltoratska, N. O. Pasmurtseva, O. O. Solovieva, I. I. Volobayev

Анотація


Гідрогелі з інкорпорованими кислотно-активованими пластинками Laponite® (LapA) представляють нове покоління біоматеріалів із перспективним біомедичним застосуванням (наприклад, для діагностики та терапії). Наноматеріали на основі LapA мають високу питому поверхню та демонструють досить привабливі гідрофільні властивості. Фізичне зшивання гідрогелів за допомогою LapA дозволило значно покращити однорідність систем, прозорість і транспорт ліків у цих системах. Загалом включення LapA також може впливати на рівноважний ступінь набухання при фазовому переході від набряклої до зморщеної гідрогелевої фази. У даній роботі досліджено ефективність використання поліакриламідних гідрогелів (PAAG) з інкорпорованим LapA для діагностики онкологічних захворювань. Процедуру синтезу проводили за допомогою ультразвукової обробки водної дисперсії сумішей мономерa, зшиваючого агента та ініціаторів. Зразки PAAG+LapA характеризували за допомогою вивчення ступеня набухання та скануючої електронної мікроскопії (SEM). Аналіз SEM зображень свідчить про наявність інтеграції нанопластинок LapA в структуру гідрогелю та формування оболонок агрегованих частинок LapA. Це можна пояснити утворенням більш активних форм LapA з більш міцними внутрішніми зв’язками. Також оцінювали вплив концентрації Lap, LapA на кінетику набухання та максимальний ступінь набухання.Максимальний рівноважний ступінь набухання Qmax досягався протягом перших 5 годин. Концентрація нанопластинок впливала на величину Qmax, і спочатку вона знижувалася до мінімального значення Qmax » 7.6 г/г при CLap = CLapA » 0.04 %, а потім зростала при вищих концентраціях. Для цих зразків спектр поділу білків плазми периферичної крові вивчали за допомогою методу електрофорезу у поліакриламідному гелі з додецилсульфатом натрію (SDS-PAGE). Досліджувалися зразки плазми периферичної крові, отримані від донорів, і пацієнтів з колоректальним раком  без віддалених метастазів і з віддаленими метастазами. Краще розділення білків плазми людини спостерігалося в гідрогелях з вбудованими пластинками LapA. У майбутніх дослідженнях бажано перевірити використання цих нових матеріалів для електрофоретичної SDS-PAGE діагностики різних форм онкологічних захворювань.


Ключові слова


Пластинки Laponite; кислотна активація; набухання; SDS-PAGE; діагностика онкологічних захворювань

Посилання


1. Samoylenko O., Korotych O., Manilo M., Samchenko Y., Shlyakhovenko V., Lebovka N. Chapter 15. Biomedical Applications of Laponite-based Nanomaterials and Formulations. In: Soft Matter Systems for Biomedical Applications. (Springer Proceedings in Physics, 2022). P. 385. https://doi.org/10.1007/978-3-030-80924-9_15

2. Lebovka N.I., Samchenko Y.M., Kernosenko L.O., Poltoratska T.P., Pasmurtseva N.O., Mamyshev I.E., Gigiberiya V.A. Temperature sensitive hydrogels cross-linked by magnetic LAPONITE® RD®: effects of particle magnetization. Mater. Adv. 2020. 1(8): 2994. https://doi.org/10.1039/D0MA00687D

3. Gantenbein D., Schoelkopf J., Matthews G.P., Gane P.A.C. Determining the size distribution-defined aspect ratio of platy particles. Appl. Clay Sci. 2011. 53(4): 544. https://doi.org/10.1016/j.clay.2011.04.020

4. Balnois E., Durand-Vidal S., Levitz P. Probing the morphology of laponite clay colloids by atomic force microscopy. Langmuir. 2003. 19(17): 6633. https://doi.org/10.1021/la0340908

5. Neumann B.S. Behaviour of a synthetic clay in pigment dispersions. Rheol. Acta. 1965. 4(4): 250. https://doi.org/10.1007/BF01973660

6. Shafran K., Jeans C., Kemp S.J., Murphy K. Dr Barbara S. Neumann: Clay scientist and industrial pioneer; creator of Laponite®. Clay Miner. 2020. 55(3): 1. https://doi.org/10.1180/clm.2020.35

7. Tzitzios V., Basina G., Bakandritsos A., Hadjipanayis C.G., Mao H., Niarchos D., Hadjipanayis G.C., Tucek J., Zboril R. Immobilization of magnetic iron oxide nanoparticles on Laponite discs - an easy way to biocompatible ferrofluids and ferrogels. J. Mater. Chem. 2010. 20(26): 5418. https://doi.org/10.1039/c0jm00061b

8. Pujala R.K. Dispersion stability, microstructure and phase transition of anisotropic nanodiscs. (Switzerland: Springer International Publishing, 2014). https://doi.org/10.1007/978-3-319-04555-9

9. Becher T.B., Braga C.B., Bertuzzi D.L., Ramos M.D., Hassan A., Crespilho F.N., Ornelas C. The structure--property relation Laponite® materials: from Wigner glasses to strong self-healing hydrogels formed by non-covalent interactions. Soft Matter. 2019. 15(6): 1278. https://doi.org/10.1039/C8SM01965G

10. Gholamipour-Shirazi A., Carvalho M.S., Huila M.F.G., Araki K., Dommersnes P., Fossum J.O. Transition from glass-to gel-like states in clay at a liquid interface. Sci. Rep. 2016. 6: 37239. https://doi.org/10.1038/srep37239

11. Morariu S., Teodorescu M. Laponite® - A versatile component in hybrid materials for biomedical applications. Memoirs of the Scientific Sections of the Romanian Academy. 2020. 43: 1.

12. Chimene D., Alge D.L., Gaharwar A.K. Two-dimensional nanomaterials for biomedical applications: emerging trends and future prospects. Adv. Mater. 2015. 27(45): 7261. https://doi.org/10.1002/adma.201502422

13. Tomás H., Alves C.S., Rodrigues J. Laponite®: A key nanoplatform for biomedical applications? Nanomedicine Nanotechnology, Biol. Med. 2018. 14(7): 2407. https://doi.org/10.1016/j.nano.2017.04.016

14. Das S.S., Neelam, Hussain K., Singh S., Hussain A., Faruk A., Tebyetekerwa M. Laponite-based nanomaterials for biomedical applications: a review. Curr. Pharm. Des. 2019. 25(4): 424. https://doi.org/10.2174/1381612825666190402165845

15. De Melo Barbosa R., Ferreira M.A., Meirelles L.M.A., Zorato N., Raffin F.N. Nanoclays in drug delivery systems. In: Clay Nanoparticles. Properties and Applications. Micro and Nano Technologies. (Elsevier, 2020). P. 185. https://doi.org/10.1016/B978-0-12-816783-0.00008-6

16. Ianchis R., Ninciuleanu C.M., Gifu I.C., Alexandrescu E., Nistor C.L., Nitu S., Petcu C. Hydrogel-clay nanocomposites as carriers for controlled release. Curr. Med. Chem. 2020. 27(6): 919. https://doi.org/10.2174/0929867325666180831151055

17. Jayakumar A., Surendranath A., Mohanan P.V. 2D materials for next generation healthcare applications. Int. J. Pharm. 2018. 551(1-2): 309. https://doi.org/10.1016/j.ijpharm.2018.09.041

18. Mousa M., Evans N.D., Oreffo R.O.C., Dawson J.I. Clay nanoparticles for regenerative medicine and biomaterial design: a review of clay bioactivity. Biomaterials. 2018. 159: 204. https://doi.org/10.1016/j.biomaterials.2017.12.024

19. Ogunsona E.O., Muthuraj R., Ojogbo E., Valerio O., Mekonnen T.H. Engineered nanomaterials for antimicrobial applications: a review. Appl. Mater. Today. 2020. 18: 100473. https://doi.org/10.1016/j.apmt.2019.100473

20. Pramanik S., Sundar Das D. Future prospects and commercial viability of two-dimensional nanostructures for biomedical technology. Chapter 9. In: Two-Dimensional Nanostructures for Biomedical Technology. (Elsevier, 2020). P. 281. https://doi.org/10.1016/B978-0-12-817650-4.00009-7

21. Zhang J., Zhou C.H., Petit S., Zhang H. Hectorite: Synthesis, modification, assembly and applications. Appl. Clay Sci. 2019. 177: 114. https://doi.org/10.1016/j.clay.2019.05.001

22. Cai Y., Liu B., Liao M., He L., Zhu C. Application of periareolar mammaplasty with the tissue folding technique in breast reshaping following polyacrylamide hydrogel removal. Breast Care. 2020. 15(2): 157. https://doi.org/10.1159/000500879

23. Choi S.B., Kim J., Kim D., Park J., Lee Y., Park K., Kim E.S., Lee S.M., Kim S.-W. Augmentation Mammoplasty Using Polyacrylamide Hydrogel Injection Can Mimic Breast Cancer After 20 Years: A Case Report. J. Breast Dis. 2022. 10(2): 77. https://doi.org/10.14449/jbd.2022.10.2.77

24. Romero M., Macchione M.A., Mattea F., Strumia M. The role of polymers in analytical medical applications. A review. Microchem. J. 2020. 159: 105366. https://doi.org/10.1016/j.microc.2020.105366

25. Xiong C., Chen Y., Xu Y., Jiang W., Yin X., Chen D., Gong X., He T., An Y., Han Y. A review of complications of polyacrylamide hydrogel injection. Chinese J. Plast. Reconstr. Surg. 2023. 5(2): 86. https://doi.org/10.1016/j.cjprs.2022.11.003

26. Green M.R., Sambrook J. Polyacrylamide gel electrophoresis. Cold Spring Harb. Protoc. 2020. 2020(12): 525. https://doi.org/10.1101/pdb.prot100412

27. Sennakesavan G., Mostakhdemin M., Dkhar L.K., Seyfoddin A., Fatihhi S.J. Acrylic acid/acrylamide based hydrogels and its properties-A review. Polym. Degrad. Stab. 2020. 180: 109308. https://doi.org/10.1016/j.polymdegradstab.2020.109308

28. Sepantafar M., Maheronnaghsh R., Mohammadi H., Rajabi-Zeleti S., Annabi N., Aghdami N., Baharvand H. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol. Adv. 2016. 34(4): 362. https://doi.org/10.1016/j.biotechadv.2016.03.003

29. Magdeldin S. Gel electrophoresis: Principles and basics. (BoD--Books on Demand, 2012). https://doi.org/10.5772/2205

30. Wuethrich A., Quirino J.P. A decade of microchip electrophoresis for clinical diagnostics--a review of 2008-2017. Anal. Chim. Acta. 2019. 1045: 42. https://doi.org/10.1016/j.aca.2018.08.009

31. Shlyakhovenko V., Samoylenko O. Photopolymerization with EDTA and Riboflavin for Proteins Analysis in Polyacrylamide Gel Electrophoresis. Protein J. 2022. 41(4): 438. https://doi.org/10.1007/s10930-022-10068-3

32. Tomascova A., Lehotsky J., Kalenska D., Baranovicova E., Kaplan P., Tatarkova Z. A comparison of albumin removal procedures for proteomic analysis of blood plasma. Gen. Physiol. Biophys. 2019. 38(4): 305. https://doi.org/10.4149/gpb_2019009

33. Raykin J., Snider E., Bheri S., Mulvihill J., Ethier C.R. A modified gelatin zymography technique incorporating total protein normalization. Anal. Biochem. 2017. 521: 8. https://doi.org/10.1016/j.ab.2017.01.003

34. Miller A.J., Roman B., Norstrom E. A method for easily customizable gradient gel electrophoresis. Anal. Biochem. 2016. 509: 12. https://doi.org/10.1016/j.ab.2016.07.003

35. McCausland J.A., Levine A.D. Colorimetric evaluation of PAGE gradient gels. Anal. Biochem. 2020. 594: 113613. https://doi.org/10.1016/j.ab.2020.113613

36. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. 227(5259): 680. https://doi.org/10.1038/227680a0

37. Brunelle J.L., Green R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol. 2014. 541: 151. https://doi.org/10.1016/B978-0-12-420119-4.00012-4

38. Anonymous. Laponite. Performance Additives. BYK. Technical Information B-RI 21. 2018.

39. Lebovka N., Goncharuk O., Klepko V., Mykhailyk V., Samchenko Y., Kernosenko L., Pasmurtseva N., Poltoratska T., Siryk O., Solovieva O., Tatochenko M. Cross-Linked Hydrogels Based on PolyNIPAAm and Acid-Activated Laponite RD: Swelling and Tunable Thermosensitivity. Langmuir. 2022. 38(18): 5708. https://doi.org/10.1021/acs.langmuir.2c00310

40. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. (John Wiley & Sons, 2009). https://doi.org/10.1002/9780470405888

41. Badertscher M., Buhlmann P., Pretsch E. Structure determination of organic compounds. Tables of Spectral Data. (Springer, 2009).

42. Komadel P. Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 2016. 131: 84. https://doi.org/10.1016/j.clay.2016.05.001

43. Komadel P., Madejova J. Chapter 7.1 Acid Activation of Clay Minerals. Developments in Clay Science. 2006. 1: 263. https://doi.org/10.1016/S1572-4352(05)01008-1

44. Tkáč I., Komadel P., Müller D. Acid-treated montmorillonites - A study by 29Si and 27Al MAS NMR. Clay Miner. 1994. 29(1): 11. https://doi.org/10.1180/claymin.1994.029.1.02

45. Breen C., Madejová J., Komadel P. Characterisation of moderately acid-treated, size-fractionated montmorillonites using IR and MAS NMR spectroscopy and thermal analysis. J. Mater. Chem. 1995. 5(3): 469. https://doi.org/10.1039/JM9950500469

46. Bickmore B.R., Bosbach D., Hochella Jr M.F., Charlet L., Rufe E. In situ atomic force microscopy study of hectorite and nontronite dissolution: Implications for phyllosilicate edge surface structures and dissolution mechanisms. Am. Mineral. 2001. 86(4): 411. https://doi.org/10.2138/am-2001-0404

47. Van Rompaey K., Van Ranst E., De Coninck F., Vindevogel N. Dissolution characteristics of hectorite in inorganic acids. Appl. Clay Sci. 2002. 21(5): 241. https://doi.org/10.1016/S0169-1317(02)00086-8

48. Franco F., Pozo M., Cecilia J.A., Benitez-Guerrero M., Lorente M. Effectiveness of microwave assisted acid treatment on dioctahedral and trioctahedral smectites. The influence of octahedral composition. Appl. Clay Sci. 2016. 120: 70. https://doi.org/10.1016/j.clay.2015.11.021

49. Mishra A.K., Kuila T., Kim N.H., Lee J.H. Effect of peptizer on the properties of Nafion--Laponite clay nanocomposite membranes for polymer electrolyte membrane fuel cells. J. Membr. Sci. 2012. 389: 316. https://doi.org/10.1016/j.memsci.2011.10.043

50. Mishra A.K., Chattopadhyay S., Nando G.B. Effect of modifiers on morphology and thermal properties of novel thermoplastic polyurethane-peptized laponite nanocomposite. J. Appl. Polym. Sci. 2010. 115(1): 558. https://doi.org/10.1002/app.30975

51. Mishra A.K., Rajamohanan P.R., Nando G.B., Chattopadhyay S. Structure - property of thermoplastic polyurethane - clay nanocomposite based on covalent and dual-modified Laponite. Adv. Sci. Lett. 2011. 4(1): 65. https://doi.org/10.1166/asl.2011.1174

52. Wheeler P.A., Wang J., Baker J., Mathias L.J. Synthesis and characterization of covalently functionalized laponite clay. Chem. Mater. 2005. 17(11): 3012. https://doi.org/10.1021/cm050306a

53. Li P., Kim N.H., Hui D., Rhee K.Y., Lee J.H. Improved mechanical and swelling behavior of the composite hydrogels prepared by ionic monomer and acid-activated Laponite. Appl. Clay Sci. 2009. 46(4): 414. https://doi.org/10.1016/j.clay.2009.10.007

54. Cameron J.M., Bruno C., Parachalil D.R., Baker M.J., Bonnier F., Butler H.J., Byrne H.J. Vibrational spectroscopic analysis and quantification of proteins in human blood plasma and serum. In: Vibrational Spectroscopy in Protein Research. (Elsevier, 2020). P. 269. https://doi.org/10.1016/B978-0-12-818610-7.00010-4




DOI: https://doi.org/10.15407/hftp15.04.514

Copyright (©) 2024 Yu. M. Samchenko, O. A. Samoylenko, A. V. Verbinenko, I. I. Ganusevich, L. O. Kernosenko, T. P. Poltoratska, N. O. Pasmurtseva, O. O. Solovieva, I. I. Volobayev

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.