Полімер-неорганічні мембрани для видалення пестицидів з води iз використанням баромембранного методу
DOI: https://doi.org/10.15407/hftp15.04.534
Анотація
Пестициди потрапляють до поверхневих та підземних вод не лише зі сільськогосподарських угідь, а й із підприємств. де виробляють та фасують ці речовини. Таким чином, необхідно вирішити проблему стічних вод таких підприємств. Дану роботу присвячено розробці високоефективних матеріалів для баромембранних процесів, які б були спрямовані на видалення пестицидів з води із подальшим використанням концентрату. Поліамідні (ПA) та полівініліденфторидні (ПВДФ) мікрофільтраційні мембрани, а також поліакрилонітрильні (ПАН) ультрафільтраційні мембрани модифікували гідратованим діоксидом цирконію (ГДЦ) шляхом осадження іоніту із золю парами амоніаку безпосередньо в порах полімера. Мембрани досліджували методом СЕМ, також використовували енергодисперсійну рентгенівську та ІЧ-Фур’є спектроскопію. ГДЦ в активному шарі, а також продукти гідролізу ПA або ПAН підвищують гідрофільність поверхні мембрани: наприклад, контактний кут води зменшується з 69° до 43° для зразка ПA. Для тестування мембран використовували воду як робочу рідину. Розрахунки за рівнянням Хагена-Пуазейля показали зменшення розміру пор модифікованих мембран у » 2–3 рази порівняно з немодифікованими. Селективність ГДЦ-вмісних мембран досягає 90–96 % відносно бичачого сироваткового альбуміну та перевищує 99 % у випадку хізалофоп-п-етилу. Найбільше значення потоку пермеату (196 л м–2 год–1 атм–1) було виявлено для зразка ПВДФ, що містить ГДЦ. Концентрація пестициду у пермеаті становила 0.0002–0.008 мг л–1. Додаткова обробка пермеату включала адсорбцію на біовугіллі в динамічних умовах. Згідно даних методу рідинної хроматографії, така обробка дозволяє зменшити вміст пестициду в розчині до рівня, нижчого за межу визначення або гранично припустиму концентрацію для поверхневих вод (0.0001 мг л–1).
Ключові слова
Посилання
1. Pisharody L., Gopinath A., Malhotra M., Nidheesh P.V., Kumar M.S. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere 2022. 287(Part 2): 132216. https://doi.org/10.1016/j.chemosphere.2021.132216
2. Reberski J.L., Terzic J., Maurice L.D., Lapworth D.J. Emerging organic contaminants in karst groundwater: a global level assessment. J. Hydrol. 2022. 604: 127242. https://doi.org/10.1016/j.jhydrol.2021.127242
3. Halbach K., Moder M., Schrader S., Liebmann L., Schafer R.B., Schneeweiss A., Schreiner V.C., Vormeier P., Weisner O., Liess M., Reemtsma T. Small streams-large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Res. 2021. 203: 117535. https://doi.org/10.1016/j.watres.2021.117535
4. Zhou Y., Meng J., Zhang M., Chen S., He B., Zhao H., Li Q., Zhang S., Wang T. Which type of pollutants need to be controlled with priority in wastewater treatment plants: traditional or emerging pollutants? Environ. Int. 2019. 131: 104982. https://doi.org/10.1016/j.envint.2019.104982
5. Syafrudin M., Kristanti R.A., Yuniarto A., Hadibarata T., Rhee J., Al-onazi W.A., Algarni T.S., Almarri A.H., Al-Mohaimeed A.M. Pesticides in drinking water - a review. Int. J. Environ. Res. Public Health. 2021. 18(2): 468. https://doi.org/10.3390/ijerph18020468
6. Szocs E., Brinke M., Karaoglan B., Schafer R.B. Large Scale Risks from Agricultural Pesticides in Small Streams. Environ. Sci. Technol. 2017. 51(13): 7378. https://doi.org/10.1021/acs.est.7b00933
7. Zhang Ye., Li J.-N., Wang J.-X., Li Y.F., Kallenborn R., Xiao H., Cai M.-G., Tang Z.-H., Zhang Z.-F. High-throughput screening of 222 pesticides in road environments in a megacity of northern China: A new approach to urban population exposure. Environ. Res. 2024. 257: 119379. https://doi.org/10.1016/j.envres.2024.119379
8. Choudri B.S., Charabi Y., Al-Nasiri N., Al-Awadhi T. Pesticides and herbicides. Water Environ. Res. 2020. 92: 1425. https://doi.org/10.1002/wer.1380
9. Cui S., Hough R., Yates K., Osprey M., Kerr C., Cooper P., Coull M., Zhang Z. Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: implications for pesticides monitoring. Sci. Total Environ. 2020. 698: 134228. https://doi.org/10.1016/j.scitotenv.2019.134228
10. Gramlich A., Stoll S., Stamm C., Walter T., Prasuhn V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields - a review. Agric. Ecosyst. Environ. 2018. 266: 84. https://doi.org/10.1016/j.agee.2018.04.005
11. Vryzas Z. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health. 2018. 4: 5. https://doi.org/10.1016/j.coesh.2018.03.001
12. Mello M.F., Scapini R. Reverse logistics of agrochemical pesticide packaging and the impacts to the environment. Braz. J. Operat. Product. Manag. 2016. 13: 110. https://doi.org/10.14488/BJOPM.2016.v13.n1.a13
13. Garbounis G., Karasali H., Komilis D. A life cycle analysis to optimally manage wasted plastic pesticide containers. Sustainability. 2022. 14(14): 8405. https://doi.org/10.3390/su14148405
14. Mohafrash S.M., Mossa A.T.H. Disposal of expired empty containers and waste from pesticides. Egypt. J. Chem. 2024. 67(4): 65.
15. Yuan S., Arellano A.F., Knickrehm L., Chang H., Christopher L., Castro C.L., Furlong M. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona. Atmos. Environ. 2024. 319: 120262. https://doi.org/10.1016/j.atmosenv.2023.120262
16. Oldenkamp R., Benestad R.E., Hader J.D., Mentzel S., Nathan R., Madsen A.L., Moe S.J. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems. Integr. Environ. Assess. Manage. 2024. 20(2): 384. https://doi.org/10.1002/ieam.4849
17. Bighiu M.A., Höss S., Traunspurger W., Kahlert M., Goedkoop W. Limited effects of pesticides on stream macroinvertebrates, biofilm nematodes, and algae in intensive agricultural landscapes in Sweden. Water Res. 2024. 174: 115640. https://doi.org/10.1016/j.watres.2020.115640
18. Sumudumali R.G.I., Jayawardana J. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ. Manage. 2021. 67: 263. https://doi.org/10.1007/s00267-020-01423-0
19. Rohani M.F. Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects - A review. Emerging Contam. 2023. 9(3):100234. https://doi.org/10.1016/j.emcon.2023.100234
20. Syafrudin M., Kristanti R.A., Yuniarto A., Hadibarata T., Rhee J., Al-onazi W.A., Algarni T.S., Almarri A.H., Al-Mohaimeed A.M. Pesticides in Drinking Water - A Review. Int. J. Environ. Res. Public Health. 2021. 18(2): 468. https://doi.org/10.3390/ijerph18020468
21. Kamata M., Matsui Y., Asami M. National trends in pesticides in drinking water and water sources in Japan. Sci. Total Environ. 2020. 744: 140930. https://doi.org/10.1016/j.scitotenv.2020.140930
22. Wang D., Yu Y., Zhang X., Zhang D., Zhang S., Wu M. Organochlorine pesticides in fish from Taihu Lake, China, and associated human health risk assessment. Ecotoxicol. Environ. Safety. 2013. 98: 383. https://doi.org/10.1016/j.ecoenv.2013.07.012
23. Abbassy M.A., Khalifa M.A., Nassar A.M.K., El-Deen E.E.N., Salim Y.M. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans. Toxicol. Res. 2021. 37(4): 495. https://doi.org/10.1007/s43188-020-00085-8
24. Kim K.-H., Kabir E., Jahan S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017. 575: 525. https://doi.org/10.1016/j.scitotenv.2016.09.009
25. Sabarwal A., Kumar K., Singh R.P. Hazardous effects of chemical pesticides on human health - Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018. 63: 103. https://doi.org/10.1016/j.etap.2018.08.018
26. Saleh I.A., Zouari N., Al-Ghouti M.A. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ. Technol. Innovation. 2020. 19: 101026. https://doi.org/10.1016/j.eti.2020.101026
27. Cruz-Alcalde A., Sans C., Esplugas S. Priority pesticides abatement by advanced water technologies: the case of acetamiprid removal by ozonation. Sci. Total Environ. 2017. 599-600: 1454. https://doi.org/10.1016/j.scitotenv.2017.05.065
28. Ejeta S.Y., Imae T. Photodegradation of pollutant pesticide by oxidized graphitic carbon nitride catalysts. J. Photochem. Photobiol. Chem. 2021. 404: 112955. https://doi.org/10.1016/j.jphotochem.2020.112955
29. Salam M.A., Abu Khadra M.R., Mohamed A.S. Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles. Environ. Pollut. 2020. 259: 113874. https://doi.org/10.1016/j.envpol.2019.113874
30. Farré M.J, Franch M.I., Malato S., Ayllón J.A., Peral J., Doménech X. Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere. 2005. 58(8): 1127. https://doi.org/10.1016/j.chemosphere.2004.09.064
31. Solís R.R., Rivas F.J., Martínez-Piernas A., Agüera A. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chem. Eng. J. 2016. 292: 72. https://doi.org/10.1016/j.cej.2016.02.005
32. Brillas E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. A review. Sep. Purif. Technol. 2022. 284: 120290. https://doi.org/10.1016/j.seppur.2021.120290
33. Bano K., Kaushal S., Singh P.P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron. 2021. 209: 115465. https://doi.org/10.1016/j.poly.2021.115465
34. Khan S.H., Pathak B. Zinc oxide based photocatalytic degradation of persistent pesticides: a comprehensive review. Environ. Nanotechnol. Monit. Manage. 2020. 13: 100290. https://doi.org/10.1016/j.enmm.2020.100290
35. Meephon S., Rungrotmongkol T., Puttamat S., Praserthdam S., Pavarajarn V. Heterogeneous photocatalytic degradation of diuron on zinc oxide: influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates. J. Environ. Sci. 2019. 84: 97. https://doi.org/10.1016/j.jes.2019.04.016
36. Chiron S., Fernandez-Alba A., Rodriguez A., Garcia-Calvo E. Pesticide chemical oxidation: state-of-the-art. Water Res. 2000. 34(2): 366. https://doi.org/10.1016/S0043-1354(99)00173-6
37. Trellu C., Olvera Vargas H., Mousset E., Oturan N., Oturan M.A. Electrochemical technologies for the treatment of pesticides. Curr. Opin. Electrochem. 2021. 26: 100677. https://doi.org/10.1016/j.coelec.2020.100677
38. Xu J., Olvera-Vargas H., Teo F.Y.H., Lefebvre O. A comparison of visible-light photocatalysts for solar photoelectrocatalysis coupled to solar photoelectro-Fenton: application to the degradation of the pesticide simazine. Chemosphere. 2021. 276: 130138. https://doi.org/10.1016/j.chemosphere.2021.130138
39. Ning Y., Li K., Zhao Z., Chen D., Li Y., Liu Y., Yang Q., Jiang B. Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: synergistic effect of anodic oxidation and cathodic precipitation. J. Taiwan Inst. Chem. Eng. 2021. 125: 267. https://doi.org/10.1016/j.jtice.2021.06.039
40. Raschitor A., Llanos J., Cañizares P., Rodrigo M.A. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2, 4-dichlorophenoxyacetic acid. Chemosphere. 2017. 182: 85. https://doi.org/10.1016/j.chemosphere.2017.04.153
41. Ryan D.R., Maher E.K., Heffron J., Mayer B.K., McNamaran P.J. Electrocoagulation-electrooxidation for mitigating trace organic compounds in model drinking water sources. Chemosphere. 2021. 273: 129377. https://doi.org/10.1016/j.chemosphere.2020.129377
42. Raschitor A., Llanos J., Rodrigo M.A., Cañizares P. Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. J. Environ. Manage. 2019. 248: 109289. https://doi.org/10.1016/j.jenvman.2019.109289
43. Ghalwa M.A.N., Farhat B.N. Removal of imidacloprid pesticide by electrocoagulation process using iron and aluminum electrodes. J. Environ. Anal. Chem. 2015. 2(4): 1000154. https://doi.org/10.4172/2380-2391.1000154
44. Babu B.R., Meera K.M.S., Venkatesan P. Removal of pesticides from wastewater by electrochemical methods A comparative approach. Sustain. Environ. Res. 2011. 21(6): 401.
45. Alfredy T., Elisadiki J., Jande Y.A.C. Capacitive deionization for the removal of paraquat herbicide from aqueous solution. Adsorption Sci. Technol. 2021. 2021(149): 1. https://doi.org/10.1155/2021/9601012
46. Monga D., Kaur P., Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. Curr. Res. Microb. Sci. 2022. 3: 100092. https://doi.org/10.1016/j.crmicr.2021.100092
47. Bose S., Kumar P.S., Vo D.-V.N., A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere. 2021. 283: 131447. https://doi.org/10.1016/j.chemosphere.2021.131447
48. Tarla D.N., Erickson L.E., Hettiarachchi G.M., Amadi S.I., Galkaduwa M., Davis L.C., Nurzhanova A., Pidlisnyuk V. Phytoremediation and bioremediation of pesticide-contaminated soil. Appl. Sci. 2020. 10: 1217. https://doi.org/10.3390/app10041217
49. Pedroso M.M., Hine D., Hahn S., Chmielewicz W.M., Diegel J., Gahan L., Schenk G. Pesticide degradation by immobilised metalloenzymes provides an attractive avenue for bioremediation. EFB Bioecon. J. 2021. 1: 100015. https://doi.org/10.1016/j.bioeco.2021.100015
50. Mahlalela L.C., Casado C., Marugan J., Septien S., Ndlovu T., Dlamini L.N. Coupling biological and photocatalytic treatment of atrazine and tebuthiuron in aqueous solution. J. Water Process. Eng. 2021. 40: 101918. https://doi.org/10.1016/j.jwpe.2021.101918
51. Zhang Y., Cao X., Yang Y., Guan S., Wang X., Li H., Zheng X., Zhou L., Jiang Y., Gao J. Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chem. Eng. 2023. 4(1): 30. https://doi.org/10.1016/j.gce.2022.02.001
52. Sarker A., Nandi R., Kim J.-E., Islam T. Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: prospects and challenges. Environ. Technol. Innovation. 2021. 23: 101777. https://doi.org/10.1016/j.eti.2021.101777
53. Wang Y., Lin C., Liu X., Ren W., Huang X., He M., Ouyang W. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration. Sci. Total Environ. 2021. 778: 146353. https://doi.org/10.1016/j.scitotenv.2021.146353
54. Dzyazko Yu.S., Palchik O.V., Ogenko V.M., Shtemberg L.Ya., Bogomaz V.I., Protsenko S.A., Khomenko V.G., Makeeva I.S., Chernysh O.V., Dzyazko O.G. Nanoporous biochar for removal of toxic organic compounds from water. Springer Proceedings in Physics. 2019. 222: 209. https://doi.org/10.1007/978-3-030-17755-3_14
55. Nassar A.E., El-Aswar E.I., Rizk S.A., El-Sayed Gaber S., Jahin H.S. Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Sep. Purif. Technol. 2023. 306(A): 122569. https://doi.org/10.1016/j.seppur.2022.122569
56. Masini J.C., Abate G. Guidelines to study the adsorption of pesticides onto clay minerals aiming at a straightforward evaluation of their removal performance. Minerals. 2021. 11(11): 1282. https://doi.org/10.3390/min11111282
57. Andrunik M., Bajda T. Removal of pesticides from waters by adsorption: comparison between synthetic zeolites and mesoporous silica materials. A review. Materials. 2021. 14(13): 3532. https://doi.org/10.3390/ma14133532
58. Dinu I.A., Ghimici L., Raschip I.E. Macroporous 3D chitosan cryogels for Fastac 10EC pesticide adsorption and antibacterial applications. Polymers. 2022. 14(15): 3145. https://doi.org/10.3390/polym14153145
59. Mehmeti V., Halili J., Berisha A. Which is better for Lindane pesticide adsorption, graphene or graphene oxide? An experimental and DFT study. J. Mol. Liq. 2022. 347: 118345. https://doi.org/10.1016/j.molliq.2021.118345
60. Dzyazko Yu.S., Ogenko V.M., Shteinberg L.Ya., Bildуukevich A.V., Yatsenko T.V. Composite adsorbents including oxidized graphene: effect of composition on mechanical durability and adsorption of pesticides. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 432. https://doi.org/10.15407/hftp10.04.432
61. Tang J., Ma X., Yang J., Feng D.D., Wang X.Q. Recent advances in metal-organic frameworks for pesticide detection and adsorption. Dalton Trans. 2020. 49(43): 14361. https://doi.org/10.1039/D0DT02623A
62. Qi P., Wang J., Li H., Wu Y., Liu Z., Zheng B., Wang X. Fluffy ball-like magnetic covalent organic frameworks for adsorption and removal of organothiophosphate pesticides. Sci. Total Environ. 2022. 840: 156529. https://doi.org/10.1016/j.scitotenv.2022.156529
63. Costa F.C.R., dos Santos C.R., Amaral M.C.S. Trace organic contaminants removal by membrane distillation: A review on mechanisms, performance, applications, and challenges. Chem. Eng. J. 2023. 464: 142461. https://doi.org/10.1016/j.cej.2023.142461
64. Musbah I., Ciceron D., Saboni A., Alexandrova S. Removal of pesticides and desethylatrazine (DEA) by nanofiltration: effects of organic and inorganic solutes on solute rejection. J. Chem. Technol. Metall. 2018. 53(4): 657.
65. Fujioka T., Kodamatani H., Yujue W., Yu K.D., Wanjaya E.R., Yuan H., Fang M., Snyder S.A. Assessing the passage of small pesticides through reverse osmosis membranes. J. Membr. Sci. 2020. 595: 117577. https://doi.org/10.1016/j.memsci.2019.117577
66. Zheng L., Price W.E., McDonald J., Khan S.J., Fujioka T., Nghiem L.D. New insights into the relationship between draw solution chemistry and trace organic rejection by forward osmosis. J. Membr. Sci. 2019. 587: 117184. https://doi.org/10.1016/j.memsci.2019.117184
67. Zhang Y., Lu H., Wang B., Zhang Z., Lin X., Chen Z., Li B. Removal of imidacloprid and acetamiprid from tea infusions by microfiltration membrane. Int. J. Food Sci. Technol. 2015. 50(6): 1397. https://doi.org/10.1111/ijfs.12785
68. Jolivalt C., Brenon S., Caminade E., Mougin C., Pontié M. Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J. Membr. Sci. 2000. 180(1): 103. https://doi.org/10.1016/S0376-7388(00)00522-6
69. Doulia D.S., Anagnos E.K., Liapis K.S., Klimentzos D.A. Removal of pesticides from white and red wines by microfiltration. J. Hazard. Mater. 2016. 317: 135. https://doi.org/10.1016/j.jhazmat.2016.05.054
70. Zmievskii Y., Rozhdestvenska L., Dzyazko Y., Kornienko L., Myronchuk V., Bildyukevich A., Ukrainetz A. Organic-inorganic materials for baromembrane separation. Springer Proc. Phys. 2017. 195: 675. https://doi.org/10.1007/978-3-319-56422-7_51
71. Dzyazko Y.S., Rozhdestvenskaya L.M., Zmievskii Y.G., Vilenskii A.I., Myronchuk V.G., Kornienko L.V., Vasilyuk S.V., Tsyba N.N. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res. Lett. 2015. 10: 64. https://doi.org/10.1186/s11671-015-0758-x
72. Rozhdestvenska L., Kudelko K., Ogenko V., Palchik O., Plisko T., Bildyukevich A., Zakharov V., Zmievskii Yu., Vishnevskii O. Filtration membranes containing nanoparticles of hydrated zirconium oxide - graphene oxide. 2020. Springer Proc. Phys. 246: 757. https://doi.org/10.1007/978-3-030-51905-6_51
73. Dzyazko Y., Rozhdestvenska L., Kudelko K., Ogenko V., Kolomiets Y. Membranes modified with advanced carbon nanomaterials (review). Springer Proc. Phys. 2021. 263: 151. https://doi.org/10.1007/978-3-030-74741-1_10
74. Rozhdestvenska L., Kudelko K., Ogenko V., Bildyukevich A., Plisko T., Borisenko Yu., Chmilenko V. Membranes modified by nanocomposites of hydrated zirconium dioxide and oxidized graphene. Ukr. Chem. J. 2020. 86(4): 91. https://doi.org/10.33609/2708-129X.86.4.2020.91-107
75. Kudelko K., Rozhdestvenskaya L., Ogenko V., Chmilenko V. Formation and characterization of porous anodized aluminum oxide, synthesized electrochemically in the presence of graphene oxide. Appl. Nanosci. 2022. 12: 1967. https://doi.org/10.1007/s13204-022-02457-y
76. Kudelko K.O., Rozhdestvenska L.M., Ponomarova L.M., Оgenko V.M. Anodic aluminum oxide-membrane prepared in electrolyte "oxalic acid - matter with carbon nanodots". Him. Fiz. Tehnol. Poverhni. 2023. 14(2): 237. https://doi.org/10.15407/hftp14.02.237
77. Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Appl. Nanosci. 2019. 9(5): 997. https://doi.org/10.1007/s13204-018-0689-9
78. Bildyukevich A.V., Plisko T.V., Shustikov A.A., Dzyazko Yu.S., Rozhdestvenska L.M., Pratsenko S.A. Effect of the solvent nature on the structure and performance of poly(amide-imide) ultrafiltration membranes. J. Mater. Sci. 2020. 55(22): 9638. https://doi.org/10.1007/s10853-020-04714-3
79. Perlova O.V., Dzyazko Yu.S., Palchik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020. 10: 4591. https://doi.org/10.1007/s13204-020-01313-1
80. Dzyazko Yu., Volfkovich Yu., Perlova O., Ponomaryova L., Perlova N., Kolomiets E. Effect of porosity on ion transport through polymers and polymer-based composites containing inorganic nanoparticles (review). Springer Proc. Phys. 2019. 222: 235. https://doi.org/10.1007/978-3-030-17755-3_16
81. Kudelko K., Maltseva T., Bieliakov V. Adsorption and mobility of Cu (II), Cd (II), Pb (II) ions adsorbed on (hydr)oxide polymer sorbents MxOy•nH2O, M = Zr (IV), Ti (IV), Sn (IV), Mn (IV). Desalin. Water Treat. 2011. 35(1-3): 295.
82. Mal'tseva T.V., Yatsenko T.V., Kudelko E.O., Belyakov V.N. The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ. J. Appl. Chem. 2011. 84(5): 726. https://doi.org/10.1134/S107042721105003X
83. Kudelko E., Mal'tseva T., Belyakov V. Sorption of Cr(VI) ions by oxyhydrates of Mx Al1−xOy·nH2O composition, where M is Zr(IV), Ti(IV), or Sn(IV). Colloid. J. 2012. 74(3): 313. https://doi.org/10.1134/S1061933X12010073
84. Mulder M. Basic Principles of Membrane Technology. (Dordrecht, Boston, London: Kluwer Academic Publisher, 1996). https://doi.org/10.1007/978-94-009-1766-8
85. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976. 72(1-2): 248. https://doi.org/10.1006/abio.1976.9999
86. Gao H., Zhong S., Dangayach R., Chen Y. Understanding and designing a high-performance ultrafiltration membrane using machine learning, Environ. Sci. Technol. 2023. 57(46): 17831. https://doi.org/10.1021/acs.est.2c05404
87. Krentsel L.B., Kudryavtsev Y.V., Rebrov A.I., Litmanovich A.D., Plate N.A. Acidic Hydrolysis of Polyacrylonitrile: Effect of Neighboring Groups. Macromolecules. 2001. 34(16): 5607. https://doi.org/10.1021/ma010213o
88. Kudryavtsev Y.V., Krentsel L.B., Bondarenko G.N., Litmanovich A.D., Plate N.A., Schapowalow S., Sackmann G. Alkaline hydrolysis of polyacrylonitrile, 2a. On the product swelling. Macromol. Chem. Phys. 2000. 201(16): 1419. https://doi.org/10.1002/1521-3935(20000801)201:13<1419::AID-MACP1419>3.0.CO;2-3
89. Lee J.Y., Kim K.-J. MEG effects on hydrolysis of polyamide 66/glass fiber composites and mechanical property changes. Molecules. 2019. 24(4): 755. https://doi.org/10.3390/molecules24040755
90. Nakanishi K. Infrared Absorption Spectroscopy. (San-Francisco, Nancodo, Tokio: Holden Day, 1962).
91. Jun B.M., Lee H.K., Kwon Y.N. Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment. Chem. Eng. J. 2018. 332: 419. https://doi.org/10.1016/j.cej.2017.09.062
92. Puhan M.R., Sutariya B., Karan S. Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. J. Membr. Sci. 2022. 661: 120887. https://doi.org/10.1016/j.memsci.2022.120887
93. Cheraghali R., Maghsoud Z. Enhanced modification technique for polyacrylonitrile UF membranes by direct hydrolysis in the immersion bath. J. Appl. Polym. Sci. 2020. 137(16): 48583. https://doi.org/10.1002/app.48583
94. Molina L.C.A., Magalhães-Ghiotto G.A.V., Nichi L., Dzyazko Y.S., Bergamasco R. Membranes modified with rigid polymer for processing solutions of vegetable proteins, Acta Periodica Technologica. 2023. 2023(54): 313. https://doi.org/10.2298/APT2354313M
95. Manickam S.S., Gelb J., McCutcheon J.R. Pore structure characterization of asymmetric membranes: non-destructive characterization of porosity and tortuosity. J. Membr. Sci. 2014. 454: 549. https://doi.org/10.1016/j.memsci.2013.11.044
96. Hong A., Fane A.G., Burford R. Factors affecting membrane coalescence of stable oil-in-water emulsions. J. Membr. Sci. 2003. 222(1-2): 19. https://doi.org/10.1016/S0376-7388(03)00137-6
97. Ho C.-C., Zydney A.L. A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Colloid Interface Sci. 2000. 232(2): 389. https://doi.org/10.1006/jcis.2000.7231
98. On the approval of the State medical and sanitary standards for the safe use of pesticides and agrochemicals. Ministry of health protection of Ukraine, order 02.02.2016, N 55, https://zakon.rada.gov.ua/laws/show/z0207-16#Text
DOI: https://doi.org/10.15407/hftp15.04.534
Copyright (©) 2024 Yu. S. Dzyazko, L. M. Rozhdestvenska, K. O. Kudelko, L. M. Ponomaryova, L. Ya. Shteinberg, T. V. Yatsenko
This work is licensed under a Creative Commons Attribution 4.0 International License.