Хімія, фізика та технологія поверхні, 2024, 15 (4), 534-551.

Полімер-неорганічні мембрани для видалення пестицидів з води iз використанням баромембранного методу



Yu. S. Dzyazko, L. M. Rozhdestvenska, K. O. Kudelko, L. M. Ponomaryova, L. Ya. Shteinberg, T. V. Yatsenko

Анотація


Пестициди потрапляють до поверхневих та підземних вод не лише зі сільськогосподарських угідь, а й із підприємств. де виробляють та фасують ці речовини. Таким чином, необхідно вирішити проблему стічних вод таких підприємств. Дану роботу присвячено розробці високоефективних матеріалів для баромембранних процесів, які б були спрямовані на видалення пестицидів з води із подальшим використанням концентрату. Поліамідні (ПA) та полівініліденфторидні (ПВДФ) мікрофільтраційні мембрани, а також поліакрилонітрильні (ПАН) ультрафільтраційні мембрани модифікували гідратованим діоксидом цирконію (ГДЦ) шляхом осадження іоніту із золю парами амоніаку безпосередньо в порах полімера. Мембрани досліджували методом СЕМ, також використовували енергодисперсійну рентгенівську та ІЧ-Фур’є спектроскопію. ГДЦ в активному шарі, а також продукти гідролізу ПA або ПAН підвищують гідрофільність поверхні мембрани: наприклад, контактний кут води зменшується з 69° до 43° для зразка ПA. Для тестування мембран використовували воду як робочу рідину. Розрахунки за рівнянням Хагена-Пуазейля показали зменшення розміру пор модифікованих мембран у » 2–3 рази порівняно з немодифікованими. Селективність ГДЦ-вмісних мембран досягає 90–96 % відносно бичачого сироваткового альбуміну та перевищує 99 % у випадку хізалофоп-п-етилу. Найбільше значення потоку пермеату              (196 л м2 год1 атм1) було виявлено для зразка ПВДФ, що містить ГДЦ. Концентрація пестициду у пермеаті становила 0.0002–0.008 мг л1. Додаткова обробка пермеату включала адсорбцію на біовугіллі в динамічних умовах. Згідно даних методу рідинної хроматографії, така обробка дозволяє зменшити вміст пестициду в розчині до рівня, нижчого за межу визначення або гранично припустиму концентрацію для поверхневих вод (0.0001 мг л1).


Ключові слова


ультрафільтрація; мікрофільтрація; пестицид; гідратований діоксид цирконію; адсорбція

Посилання


Pisharody L., Gopinath A., Malhotra M., Nidheesh P.V., Kumar M.S. Occurrence of organic micropollutants in municipal landfill leachate and its effective treatment by advanced oxidation processes. Chemosphere 2022. 287(Part 2): 132216.

Reberski J.L., Terzic J., Maurice L.D., Lapworth D.J. Emerging organic contaminants in karst groundwater: a global level assessment. J. Hydrol. 2022. 604: 127242.

Halbach K., Moder M., Schrader S., Liebmann L., Schafer R.B., Schneeweiss A., Schreiner V.C., Vormeier P., Weisner O., Liess M., Reemtsma T. Small streams–large concentrations? Pesticide monitoring in small agricultural streams in Germany during dry weather and rainfall. Water Res. 2021. 203: 117535.

Zhou Y., Meng J., Zhang M., Chen S., He B., Zhao H., Li Q., Zhang S., Wang T. Which type of pollutants need to be controlled with priority in wastewater treatment plants: traditional or emerging pollutants? Environ. Int. 2019. 131: 104982.

Syafrudin M., Kristanti R.A., Yuniarto A., Hadibarata T., Rhee J., Al-onazi W.A., Algarni T.S., Almarri A.H., Al-Mohaimeed A.M. Pesticides in drinking water – a review. Int. J. Environ. Res. Public Health. 2021. 18(2): 468.

Szocs E., Brinke M., Karaoglan B., Schafer R.B. Large Scale Risks from Agricultural Pesticides in Small Streams. Environ. Sci. Technol. 2017. 51(13): 7378.

Zhang Ye., Li J.-N., Wang J.-X., Li Y.F., Kallenborn R., Xiao H., Cai M.-G., Tang Z.-H., Zhang Z.-F. High-throughput screening of 222 pesticides in road environments in a megacity of northern China: A new approach to urban population exposure. Environ. Res. 2024. 257: 119379.

Choudri B.S., Charabi Y., Al-Nasiri N., Al-Awadhi T. Pesticides and herbicides. Water Environ. Res. 2020. 92: 1425.

Cui S., Hough R., Yates K., Osprey M., Kerr C., Cooper P., Coull M., Zhang Z. Effects of season and sediment-water exchange processes on the partitioning of pesticides in the catchment environment: implications for pesticides monitoring. Sci. Total Environ. 2020. 698: 134228.

Gramlich A., Stoll S., Stamm C., Walter T., Prasuhn V. Effects of artificial land drainage on hydrology, nutrient and pesticide fluxes from agricultural fields – a review. Agric. Ecosyst. Environ. 2018. 266: 84.

Vryzas Z. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Curr. Opin. Environ. Sci. Health. 2018. 4: 5.

Mello M.F., Scapini R. Reverse logistics of agrochemical pesticide packaging and the impacts to the environment. Braz. J. Operat. Product. Manag. 2016. 13: 110.

Garbounis G., Karasali H., Komilis D. A life cycle analysis to optimally manage wasted plastic pesticide containers. Sustainability. 2022. 14(14): 8405.

Mohafrash S.M., Mossa A.T.H. Disposal of expired empty containers and waste from pesticides. Egypt. J. Chem. 2024. 67(4): 65.

Yuan S., Arellano A.F., Knickrehm L., Chang H., Christopher L., Castro C.L., Furlong M. Towards quantifying atmospheric dispersion of pesticide spray drift in Yuma County Arizona. Atmos. Environ. 2024. 319: 120262.

Oldenkamp R., Benestad R.E., Hader J.D., Mentzel S., Nathan R., Madsen A.L., Moe S.J. Incorporating climate projections in the environmental risk assessment of pesticides in aquatic ecosystems. Integr. Environ. Assess. Manage. 2024. 20(2): 384.

Bighiu M.A., Höss S., Traunspurger W., Kahlert M., Goedkoop W. Limited effects of pesticides on stream macroinvertebrates, biofilm nematodes, and algae in intensive agricultural landscapes in Sweden. Water Res. 2024. 174: 115640.

Sumudumali R.G.I., Jayawardana J. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ. Manage. 2021. 67: 263.

Rohani M.F. Pesticides toxicity in fish: Histopathological and hemato-biochemical aspects – A review. Emerging Contam. 2023. 9(3):100234.

Syafrudin M., Kristanti R.A., Yuniarto A., Hadibarata T., Rhee J., Al-onazi W.A., Algarni T.S., Almarri A.H., Al-Mohaimeed A.M. Pesticides in Drinking Water – A Review. Int. J. Environ. Res. Public Health. 2021. 18(2): 468.

Kamata M., Matsui Y., Asami M. National trends in pesticides in drinking water and water sources in Japan. Sci. Total Environ. 2020. 744: 140930.

Wang D., Yu Y., Zhang X., Zhang D., Zhang S., Wu M. Organochlorine pesticides in fish from Taihu Lake, China, and associated human health risk assessment. Ecotoxicol. Environ. Safety. 2013. 98: 383.

Abbassy M.A., Khalifa M.A., Nassar A.M.K., El-Deen E.E.N., Salim Y.M. Analysis of organochlorine pesticides residues in fish from Edko Lake (North of Egypt) using eco-friendly method and their health implications for humans. Toxicol. Res. 2021. 37(4): 495.

Kim K.-H., Kabir E., Jahan S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017. 575: 525.

Sabarwal A., Kumar K., Singh R.P. Hazardous effects of chemical pesticides on human health – Cancer and other associated disorders. Environ. Toxicol. Pharmacol. 2018. 63: 103.

Saleh I.A., Zouari N., Al-Ghouti M.A. Removal of pesticides from water and wastewater: chemical, physical and biological treatment approaches. Environ. Technol. Innovation. 2020. 19: 101026.

Cruz-Alcalde A., Sans C., Esplugas S. Priority pesticides abatement by advanced water technologies: the case of acetamiprid removal by ozonation. Sci. Total Environ. 2017. 599–600: 1454.

Ejeta S.Y., Imae T. Photodegradation of pollutant pesticide by oxidized graphitic carbon nitride catalysts. J. Photochem. Photobiol. Chem. 2021. 404: 112955.

Salam M.A., Abu Khadra M.R., Mohamed A.S. Effective oxidation of methyl parathion pesticide in water over recycled glass based-MCM-41 decorated by green Co3O4 nanoparticles. Environ. Pollut. 2020. 259: 113874.

Farré M.J, Franch M.I., Malato S., Ayllón J.A., Peral J., Doménech X. Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation. Chemosphere. 2005. 58(8): 1127.

Solís R.R., Rivas F.J., Martínez-Piernas A., Agüera A. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chem. Eng. J. 2016. 292: 72.

Brillas E. Fenton, photo-Fenton, electro-Fenton, and their combined treatments for the removal of insecticides from waters and soils. A review. Sep. Purif. Technol. 2022. 284: 120290.

Bano K., Kaushal S., Singh P.P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron. 2021. 209: 115465.

Khan S.H., Pathak B. Zinc oxide based photocatalytic degradation of persistent pesticides: a comprehensive review. Environ. Nanotechnol. Monit. Manage. 2020. 13: 100290.

Meephon S., Rungrotmongkol T., Puttamat S., Praserthdam S., Pavarajarn V. Heterogeneous photocatalytic degradation of diuron on zinc oxide: influence of surface-dependent adsorption on kinetics, degradation pathway, and toxicity of intermediates. J. Environ. Sci. 2019. 84: 97.

Chiron S., Fernandez-Alba A., Rodriguez A., Garcia-Calvo E. Pesticide chemical oxidation: state-of-the-art. Water Res. 2000. 34(2): 366.

Trellu C., Olvera Vargas H., Mousset E., Oturan N., Oturan M.A. Electrochemical technologies for the treatment of pesticides. Curr. Opin. Electrochem. 2021. 26: 100677.

Xu J., Olvera-Vargas H., Teo F.Y.H., Lefebvre O. A comparison of visible-light photocatalysts for solar photoelectrocatalysis coupled to solar photoelectro-Fenton: application to the degradation of the pesticide simazine. Chemosphere. 2021. 276: 130138.

Ning Y., Li K., Zhao Z., Chen D., Li Y., Liu Y., Yang Q., Jiang B. Simultaneous electrochemical degradation of organophosphorus pesticides and recovery of phosphorus: synergistic effect of anodic oxidation and cathodic precipitation. J. Taiwan Inst. Chem. Eng. 2021. 125: 267.

Raschitor A., Llanos J., Cañizares P., Rodrigo M.A. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2, 4-dichlorophenoxyacetic acid. Chemosphere. 2017. 182: 85.

Ryan D.R., Maher E.K., Heffron J., Mayer B.K., McNamaran P.J. Electrocoagulation-electrooxidation for mitigating trace organic compounds in model drinking water sources. Chemosphere. 2021. 273: 129377.

Raschitor A., Llanos J., Rodrigo M.A., Cañizares P. Combined electrochemical processes for the efficient degradation of non-polar organochlorine pesticides. J. Environ. Manage. 2019. 248: 109289.

Ghalwa M.A.N., Farhat B.N. Removal of imidacloprid pesticide by electrocoagulation process using iron and aluminum electrodes. J. Environ. Anal. Chem. 2015. 2(4): 1000154.

Babu B.R., Meera K.M.S., Venkatesan P. Removal of pesticides from wastewater by electrochemical methods A comparative approach. Sustain. Environ. Res. 2011. 21(6): 401.

Alfredy T., Elisadiki J., Jande Y.A.C. Capacitive deionization for the removal of paraquat herbicide from aqueous solution. Adsorption Sci. Technol. 2021. 2021(149): 1.

Monga D., Kaur P., Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. Curr. Res. Microb. Sci. 2022. 3: 100092.

Bose S., Kumar P.S., Vo D.-V.N., A review on the microbial degradation of chlorpyrifos and its metabolite TCP. Chemosphere. 2021. 283: 131447.

Tarla D.N., Erickson L.E., Hettiarachchi G.M., Amadi S.I., Galkaduwa M., Davis L.C., Nurzhanova A., Pidlisnyuk V. Phytoremediation and bioremediation of pesticide-contaminated soil. Appl. Sci. 2020. 10: 1217.

Pedroso M.M., Hine D., Hahn S., Chmielewicz W.M., Diegel J., Gahan L., Schenk G. Pesticide degradation by immobilised metalloenzymes provides an attractive avenue for bioremediation. EFB Bioecon. J. 2021. 1: 100015.

Mahlalela L.C., Casado C., Marugan J., Septien S., Ndlovu T., Dlamini L.N. Coupling biological and photocatalytic treatment of atrazine and tebuthiuron in aqueous solution. J. Water Process. Eng. 2021. 40: 101918.

Zhang Y., Cao X., Yang Y., Guan S., Wang X., Li H., Zheng X., Zhou L., Jiang Y., Gao J. Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chem. Eng. 2023. 4(1): 30.

Sarker A., Nandi R., Kim J.-E., Islam T. Remediation of chemical pesticides from contaminated sites through potential microorganisms and their functional enzymes: prospects and challenges. Environ. Technol. Innovation. 2021. 23: 101777.

Wang Y., Lin C., Liu X., Ren W., Huang X., He M., Ouyang W. Efficient removal of acetochlor pesticide from water using magnetic activated carbon: Adsorption performance, mechanism, and regeneration exploration. Sci. Total Environ. 2021. 778: 146353.

Dzyazko Yu.S., Palchik O.V., Ogenko V.M., Shtemberg L.Ya., Bogomaz V.I., Protsenko S.A., Khomenko V.G., Makeeva I.S., Chernysh O.V., Dzyazko O.G. Nanoporous biochar for removal of toxic organic compounds from water. Springer Proceedings in Physics. 2019. 222: 209.

Nassar A.E., El-Aswar E.I., Rizk S.A., El-Sayed Gaber S., Jahin H.S. Microwave-assisted hydrothermal preparation of magnetic hydrochar for the removal of organophosphorus insecticides from aqueous solutions. Sep. Purif. Technol. 2023. 306(A): 122569.

Masini J.C., Abate G. Guidelines to study the adsorption of pesticides onto clay minerals aiming at a straightforward evaluation of their removal performance. Minerals. 2021. 11(11): 1282.

Andrunik M., Bajda T. Removal of pesticides from waters by adsorption: comparison between synthetic zeolites and mesoporous silica materials. A review. Materials. 2021. 14(13): 3532.

Dinu I.A., Ghimici L., Raschip I.E. Macroporous 3D chitosan cryogels for Fastac 10EC pesticide adsorption and antibacterial applications. Polymers. 2022. 14(15): 3145.

Mehmeti V., Halili J., Berisha A. Which is better for Lindane pesticide adsorption, graphene or graphene oxide? An experimental and DFT study. J. Mol. Liq. 2022. 347: 118345.

Dzyazko Yu.S., Ogenko V.M., Shteinberg L.Ya., Bildуukevich A.V., Yatsenko T.V. Composite adsorbents including oxidized graphene: effect of composition on mechanical durability and adsorption of pesticides. Him. Fiz. Tehnol. Poverhni. 2019. 10(4): 432.

Tang J., Ma X., Yang J., Feng D.D., Wang X.Q. Recent advances in metal–organic frameworks for pesticide detection and adsorption. Dalton Trans. 2020. 49(43): 14361.

Qi P., Wang J., Li H., Wu Y., Liu Z., Zheng B., Wang X. Fluffy ball-like magnetic covalent organic frameworks for adsorption and removal of organothiophosphate pesticides. Sci. Total Environ. 2022. 840: 156529.

Costa F.C.R., dos Santos C.R., Amaral M.C.S. Trace organic contaminants removal by membrane distillation: A review on mechanisms, performance, applications, and challenges. Chem. Eng. J. 2023. 464: 142461.

Musbah I., Ciceron D., Saboni A., Alexandrova S. Removal of pesticides and desethylatrazine (DEA) by nanofiltration: effects of organic and inorganic solutes on solute rejection. J. Chem. Technol. Metall. 2018. 53(4): 657.

Fujioka T., Kodamatani H., Yujue W., Yu K.D., Wanjaya E.R., Yuan H., Fang M., Snyder S.A. Assessing the passage of small pesticides through reverse osmosis membranes. J. Membr. Sci. 2020. 595: 117577.

Zheng L., Price W.E., McDonald J., Khan S.J., Fujioka T., Nghiem L.D. New insights into the relationship between draw solution chemistry and trace organic rejection by forward osmosis. J. Membr. Sci. 2019. 587: 117184.

Zhang Y., Lu H., Wang B., Zhang Z., Lin X., Chen Z., Li B. Removal of imidacloprid and acetamiprid from tea infusions by microfiltration membrane. Int. J. Food Sci. Technol. 2015. 50(6): 1397.

Jolivalt C., Brenon S., Caminade E., Mougin C., Pontié M. Immobilization of laccase from Trametes versicolor on a modified PVDF microfiltration membrane: characterization of the grafted support and application in removing a phenylurea pesticide in wastewater. J. Membr. Sci. 2000. 180(1): 103.

Doulia D.S., Anagnos E.K., Liapis K.S., Klimentzos D.A. Removal of pesticides from white and red wines by microfiltration. J. Hazard. Mater. 2016. 317: 135.

Zmievskii Y., Rozhdestvenska L., Dzyazko Y., Kornienko L., Myronchuk V., Bildyukevich A., Ukrainetz A. Organic-inorganic materials for baromembrane separation. Springer Proc. Phys. 2017. 195: 675.

Dzyazko Y.S., Rozhdestvenskaya L.M., Zmievskii Y.G., Vilenskii A.I., Myronchuk V.G., Kornienko L.V., Vasilyuk S.V., Tsyba N.N. Organic-inorganic materials containing nanoparticles of zirconium hydrophosphate for baromembrane separation. Nanoscale Res. Lett. 2015. 10: 64.

Rozhdestvenska L., Kudelko K., Ogenko V., Palchik O., Plisko T., Bildyukevich A., Zakharov V., Zmievskii Yu., Vishnevskii O. Filtration membranes containing nanoparticles of hydrated zirconium oxide – graphene oxide. 2020. Springer Proc. Phys. 246: 757.

Dzyazko Y., Rozhdestvenska L., Kudelko K., Ogenko V., Kolomiets Y. Membranes modified with advanced carbon nanomaterials (review). Springer Proc. Phys. 2021. 263: 151.

Rozhdestvenska L., Kudelko K., Ogenko V., Bildyukevich A., Plisko T., Borisenko Yu., Chmilenko V. Membranes modified by nanocomposites of hydrated zirconium dioxide and oxidized graphene. Ukr. Chem. J. 2020. 86(4): 91.

Kudelko K., Rozhdestvenskaya L., Ogenko V., Chmilenko V. Formation and characterization of porous anodized aluminum oxide, synthesized electrochemically in the presence of graphene oxide. Appl. Nanosci. 2022. 12: 1967.

Kudelko K.O., Rozhdestvenska L.M., Ponomarova L.M., Оgenko V.M. Anodic aluminum oxide-membrane prepared in electrolyte “oxalic acid – matter with carbon nanodots”. Him. Fiz. Tehnol. Poverhni. 2023. 14(2): 237.

Maltseva T.V., Kolomiets E.O., Dzyazko Yu.S., Scherbakov S. Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals. Appl. Nanosci. 2019. 9(5): 997.

Bildyukevich A.V., Plisko T.V., Shustikov A.A., Dzyazko Yu.S., Rozhdestvenska L.M., Pratsenko S.A. Effect of the solvent nature on the structure and performance of poly(amide-imide) ultrafiltration membranes. J. Mater. Sci. 2020. 55(22): 9638.

Perlova O.V., Dzyazko Yu.S., Palchik A.V., Ivanova I.S., Perlova N.O., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya., Dzyazko A.G. Composites based on zirconium dioxide and zirconium hydrophosphate containing graphene-like additions for removal of U(VI) compounds from water. Appl. Nanosci. 2020. 10: 4591.

Dzyazko Yu., Volfkovich Yu., Perlova O., Ponomaryova L., Perlova N., Kolomiets E. Effect of porosity on ion transport through polymers and polymer-based composites containing inorganic nanoparticles (review). Springer Proc. Phys. 2019. 222: 235.

Kudelko K., Maltseva T., Bieliakov V. Adsorption and mobility of Cu (II), Cd (II), Pb (II) ions adsorbed on (hydr)oxide polymer sorbents MxOy•nH2O, M = Zr (IV), Ti (IV), Sn (IV), Mn (IV). Desalin. Water Treat. 2011. 35(1–3): 295.

Mal’tseva T.V., Yatsenko T.V., Kudelko E.O., Belyakov V.N. The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ. J. Appl. Chem. 2011. 84(5): 726.

Kudelko E., Mal’tseva T., Belyakov V. Sorption of Cr(VI) ions by oxyhydrates of Mx Al1−xOy·nH2O composition, where M is Zr(IV), Ti(IV), or Sn(IV). Colloid. J. 2012. 74(3): 313.

Mulder M. Basic Principles of Membrane Technology. (Dordrecht, Boston, London: Kluwer Academic Publisher, 1996).

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976. 72(1–2): 248.

Gao H., Zhong S., Dangayach R., Chen Y. Understanding and designing a high-performance ultrafiltration membrane using machine learning, Environ. Sci. Technol. 2023. 57(46): 17831.

Krentsel L.B., Kudryavtsev Y.V., Rebrov A.I., Litmanovich A.D., Plate N.A. Acidic Hydrolysis of Polyacrylonitrile: Effect of Neighboring Groups. Macromolecules. 2001. 34(16): 5607.

Kudryavtsev Y.V., Krentsel L.B., Bondarenko G.N., Litmanovich A.D., Plate N.A., Schapowalow S., Sackmann G. Alkaline hydrolysis of polyacrylonitrile, 2a. On the product swelling. Macromol. Chem. Phys. 2000. 201(16): 1419.

Lee J.Y., Kim K.-J. MEG effects on hydrolysis of polyamide 66/glass fiber composites and mechanical property changes. Molecules. 2019. 24(4): 755.

Nakanishi K. Infrared Absorption Spectroscopy. (San-Francisco, Nancodo, Tokio: Holden Day, 1962).

Jun B.M., Lee H.K., Kwon Y.N. Acid-catalyzed hydrolysis of semi-aromatic polyamide NF membrane and its application to water softening and antibiotics enrichment. Chem. Eng. J. 2018. 332: 419.

Puhan M.R., Sutariya B., Karan S. Revisiting the alkali hydrolysis of polyamide nanofiltration membranes. J. Membr. Sci. 2022. 661: 120887.

Cheraghali R., Maghsoud Z. Enhanced modification technique for polyacrylonitrile UF membranes by direct hydrolysis in the immersion bath. J. Appl. Polym. Sci. 2020. 137(16): 48583.

Molina L.C.A., Magalhães-Ghiotto G.A.V., Nichi L., Dzyazko Y.S., Bergamasco R. Membranes modified with rigid polymer for processing solutions of vegetable proteins, Acta Periodica Technologica. 2023. 2023(54): 313.

Manickam S.S., Gelb J., McCutcheon J.R. Pore structure characterization of asymmetric membranes: non-destructive characterization of porosity and tortuosity. J. Membr. Sci. 2014. 454: 549.

Hong A., Fane A.G., Burford R. Factors affecting membrane coalescence of stable oil-in-water emulsions. J. Membr. Sci. 2003. 222(1–2): 19.

Ho C.-C., Zydney A.L. A combined pore blockage and cake filtration model for protein fouling during microfiltration. J. Colloid Interface Sci. 2000. 232(2): 389.

On the approval of the State medical and sanitary standards for the safe use of pesticides and agrochemicals. Ministry of health protection of Ukraine, order 02.02.2016, N 55, https://zakon.rada.gov.ua/laws/show/z0207-16#Text




Copyright (©) 2024 Yu. S. Dzyazko, L. M. Rozhdestvenska, K. O. Kudelko, L. M. Ponomaryova, L. Ya. Shteinberg, T. V. Yatsenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.