Maгнетитовмісний композит на основі целюлози качанів кукурудзи для адсорбції сполук U(VI)
DOI: https://doi.org/10.15407/hftp15.04.561
Анотація
Джерелами сполук U(VI) у підземних і поверхневих водах є урановмісні мінерали та антропогенна діяльність: атомні та теплові електростанції, збагачувальні комбінати, шахти, випробування ядерної зброї. Через токсичність і радіоактивність сполук цього металу, їхній вміст у воді суворо регламентується. Для видалення невеликої кількості U(VI) з води найбільш доцільними є методи адсорбції та іонного обміну. У даній роботі розроблено магнетитовмісний композиційний адсорбент на основі целюлози, отриманої з качанів кукурудзи. Переваги композиту перед синтетичними адсорбентами полягають у дешевій і доступній сировині для його виробництва, а також у простій процедурі синтезу. Щоб забезпечити високий вміст магнетиту (» 13.5 мас. %), перед модифікуванням із целюлози були видалені гідрофільні та гідрофобні складові. Пористі структурі композиту та магнетиту формується, зокрема, мезопорами розміром 10 нм, а чиста целюлоза характеризується мікропористою структурою. Порівняно з цим матеріалом, композит демонструє ширший інтервал pH адсорбції сполук U(VI). Найбільш сприятливі умови реалізуються при рН 4–6, коли ступінь видалення урану досягає 87–97 %. Для композиту притаманним є синергетичний ефект: він демонструє найшвидшу адсорбцію, ніж магнетит і целюлоза. Крім того, виявлено вищу ємність адсорбційного моношару для композиту (0.71 ммоль г–1) порівняно з магнетитом (0.14 ммоль г–1). Для утилізації адсорбент можна додавати в урановмісну руду перед її обробкою.
Ключові слова
Посилання
1. Su X., Liu X., Du Z., Hou C., Li M., Cao F., Chen M., Zhang T. Advances in development of safe and efficient mining of coexisting coal and uranium resources. Processes. 2024. 12(7): 1340. https://doi.org/10.3390/pr12071340
2. Harmsen K., Haan F.A.M. Occurance and behaviour of uranium and thorium in soil and water. Wageningen J. Life Sci. 1980. 28(1): 40. https://doi.org/10.18174/njas.v28i1.17043
3. Ku T.L., Mathieu G.G., Knauss K.G. Uranium in open ocean: concentration and isotopic composition. Deep Sea Res. 1977. 24(11): 1005. https://doi.org/10.1016/0146-6291(77)90571-9
4. Bleise A., Danesi P.R., Burkart W. Properties, use and health effects of depleted uranium (DU): a general overview. J. Environ. Radioact. 2003. 64(2-3): 93. https://doi.org/10.1016/S0265-931X(02)00041-3
5. Ran Y., Wang S., Zhao Y., Li J., Ran X., Hao Y. A review of biological effects and treatments of inhaled depleted uranium aerosol. J. Environ. Radioact. 2020. 222: 106357. https://doi.org/10.1016/j.jenvrad.2020.106357
6. Pöllänen R., Ikäheimonen T.K., Klemola S., Vartti V.-P., Vesterbacka K., Ristonmaa S., Honkamaa T., Sipilä P., Jokelainen I., Kosunen A., Zilliacus R., Kettunen M., Hokkanen M. Characterisation of projectiles composed of depleted uranium. J. Environ. Radioact. 2003. 64(2-3): 133. https://doi.org/10.1016/S0265-931X(02)00044-9
7. Papastefanou C. Depleted uranium in military conflicts and the impact on the environment. Health Phys. 2002. 83(2): 155. https://doi.org/10.1097/00004032-200208000-00013
8. Tamasi A.L., Boland K.S., Czerwinski K., Ellis J.K., Kozimor S.A., Martin R.L., Pugmire A.L., Reilly D., Scott B.L., Sutton A.D., Wagner G.L., Walensky J.R., Wilkerson M.P. Oxidation and Hydration of U3O8 materials following controlled exposure to temperature and humidity. Anal. Chem. 2015. 87(8): 4210. https://doi.org/10.1021/ac504105t
9. Katz S.A. The chemistry and toxicology of depleted uranium. Toxics. 2014. 2(1): 50. https://doi.org/10.3390/toxics2010050
10. Paranthaman S., Kubicki J.D., Guégan J.P., Châtellier X. Complexation of carboxyl groups in bacterial lipopolysaccharides: Interactions of H+, Mg2+, Ca2+, Cd2+, and UO22+ with Kdo and galacturonate molecules via quantum mechanical calculations and NMR spectroscopy. Chem. Geol. 2023. 273(1-2): 55. https://doi.org/10.1016/j.chemgeo.2010.02.012
11. Kozai N., Ohnuki T. Association of uranyl ions with amino functional groups. Chem. Lett. 2009. 38(2): 152. https://doi.org/10.1246/cl.2009.152
12. Hu M.Z.C., Reeves M. Ligand‐grafted biomaterials for adsorptive separations of uranium in solution. AlChE J. 1999. 45(11): 2333. https://doi.org/10.1002/aic.690451109
13. Asic A., Kurtovic-Kozaric A., Besic L., Mehinovic L., Hasic A., Kozaric M., Hukic M., Marjanovic D. Chemical toxicity and radioactivity of depleted uranium: the evidence from in vivo and in vitro studies. Environ. Res. 2017. 156: 665. https://doi.org/10.1016/j.envres.2017.04.032
14. Gongalsky K.B. Impact of pollution caused by uranium production on soil macrofauna. Environ. Monit. Assess. 2003. 89(2): 197. https://doi.org/10.1023/A:1026031224658
15. Holdway D.A. Uranium mining in relation to impacts on inland waters. Ecotoxicology. 1992. 1(2): 75. https://doi.org/10.1007/BF00831889
16. Anke M., Seeber O., Müller R., Schäfer U., Zerull J. Uranium transfer in the food chain from soil to plants, animals and man. Geochem. 2009. 69(2): 75. https://doi.org/10.1016/j.chemer.2007.12.001
17. Bjørklund G., Semenova Yu., Pivina L., Dadar M., Rahman M., Aasethi J. Uranium in drinking water: a public health threat. Arch. Toxicol. 2020. 94: 1551. https://doi.org/10.1007/s00204-020-02676-8
18. Brine W. The toxicity of depleted uranium. Int. J. Environ. Res. Public Health. 2010. 7(1): 303. https://doi.org/10.3390/ijerph7010303
19. Hakonson-Hayes A.C., Fresquez P., Whicker F. Assessing potential risks from exposure to natural uranium in well water. J. Environ. Radioact. 2002. 59(1): 29. https://doi.org/10.1016/S0265-931X(01)00034-0
20. Perlova O.V., Shirykalova A.A. Flotoextraction removal of uranium(VI) using fine emulsified solutions of trialkylamine in white spirit. J. Water Chem. Technol. 2008. 30(3): 385. https://doi.org/10.3103/S1063455X0804005X
21. Perlova O.V., Tekmenzhi E.I., Perlova N.A., Polikarpov A.P. Dynamic sorption of carbonate forms of uranium (VI) with FIBAN fibrous ion exchangers. Radiochem. 2021. 63(6): 762. https://doi.org/10.1134/S1066362221060084
22. Perlova O., Dzyazko Yu., Halutska I., Perlova N., Palchik A. Anion exchange resin modified with nanoparticles of hydrated zirconium dioxide for sorption of soluble U(VI) compounds. In: Nanooptics, Nanophotonics, Nanostructures, and Their Applications. (Springer, 2018). P. 3. https://doi.org/10.1007/978-3-319-91083-3_1
23. Pshinko G.N., Puzyrnaya L.N., Yatsik B.P., Kosorukov A.A. Removal of U(VI) from aqueous media with layered double hydroxide of Zn and Al, intercalated with hexacyanoferrate(II) ions. Radiochem. 2015. 57(6): 616. https://doi.org/10.1134/S1066362215060090
24. Dzyazko Y., Perlova O., Martovyi I. Advanced carbon nanomaterials and their composites for removal of U(VI) compounds from aqueous solutions. In: Nanooptics, Nanophotonics, Nanostructures, and Their Applications. (Springer, 2023). P. 177. https://doi.org/10.1007/978-3-031-18096-5_9
25. Chen J.-H., Lu D.-Q., Chen B., OuYang P.-K. Removal of U(VI) from aqueous solutions by using MWCNTs and chitosan modified MWCNTs. J. Radioanal. Nucl. Chem. 2013. 295: 2233. https://doi.org/10.1007/s10967-012-2276-y
26. Wu J., Tian K., Wang J. Adsorption of uranium (VI) by amidoxime modified multiwalled carbon nanotubes. Prog. Nucl. Energy. 2018. 106: 79. https://doi.org/10.1016/j.pnucene.2018.02.020
27. Yang P., Zhang H., Liu Q., Liu J., Chen R., Yu J., Hou J., Bai X., Wang J. Nano-sized architectural design of multi-activity graphene oxide (GO) by chemical post-decoration for efficient uranium(VI) extraction. J. Hazard. Mater. 2019. 375: 320. https://doi.org/10.1016/j.jhazmat.2019.05.005. https://doi.org/10.1016/j.jhazmat.2019.05.005
28. Song W.C., Shao D.D., Lu S.S., Wang X.K. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets. Sci. China Chem. 2014. 57(9): 1291. https://doi.org/10.1007/s11426-014-5119-6
29. Li N., Yang L., Wang D., Tang C., Deng W., Wang Z. High-capacity amidoxime-functionalized β-cyclodextrin/graphene aerogel for selective uranium capture. Environ. Sci. Technol. 2021. 55(13): 9181. https://doi.org/10.1021/acs.est.0c08743
30. Perlova O.V., Dzyazko Yu.S., Palchik O.V., Martovyi I.S. Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate (II) for sorption of cationic and anionic complexes of uranium(VI). Appl. Nanosci. 2022. 12(4): 651. https://doi.org/10.1007/s13204-021-01721-x
31. Perlova O.V., Dzyazko Yu.S., Malinovska A.A., Palchik A.V. Peculiarities of U(VI) sorption on composites containing hydrated titanium dioxide and potassium-cobalt hexacyanoferrate(II). Him. Fiz. Tehnol. Poverhni. 2021. 12(4): 344. https://doi.org/10.15407/hftp12.04.344
32. Perlova O.V., Ivanova I.S., Dzyazko Yu.S., Danilov M.O., Rusetskii I.A., Kolbasov G.Ya. Sorption of U(VI) compounds on inrganic composites containing partially unzipped multiwalled nanotubes. Him. Fiz. Tekhnol. Poverhni. 2021. 12(1): 16. https://doi.org/10.15407/hftp12.01.018
33. Bai J., Chu J., Yin X., Wang J., Tian W., Huang Q., Jia Z., Wu X., Guo H., Qin Z. Synthesis of amidoximated polyacrylonitrile nanoparticle/graphene composite hydrogel for selective uranium sorption from saline lake brine. Chem. Eng. J. 2020. 391: 123553. https://doi.org/10.1016/j.cej.2019.123553
34. Qian Y., Yuan Y., Wang H., Liu H., Zhang J., Shi S., Guo Z., Wang N. Highly efficient uranium adsorption by salicylaldoxime/polydopamine graphene oxide nanocomposites. J. Mater. Chem. A. 2018. 6(48): 24676. https://doi.org/10.1039/C8TA09486A
35. Zhao C., Liu J., Deng Y., Tian Y., Zhang G., Liao J., Yang J., Yang Y., Liu N., Sun Q. Uranium(VI) adsorption from aqueous solutions by microorganism-graphene oxide composites via an immobilization approach. J. Cleaner Product. 2019. 236: 117624. https://doi.org/10.1016/j.jclepro.2019.117624
36. Wang L., Shi C., Pan L., Zhang X., Zou J.J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review. Nanoscale. 2020. 12(8): 4790. https://doi.org/10.1039/C9NR09274A
37. Al-Abadleh H.A., Grassian V.H. Oxide surfaces as environmental interfaces. Surf. Sci. Rep. 2003. 52(3-4): 63. https://doi.org/10.1016/j.surfrep.2003.09.001
38. Smedley P.L., Kinniburgh D.G. Uranium in natural waters and the environment: Distribution, speciation and impact. Appl. Geochem. 2023. 148: 105534. https://doi.org/10.1016/j.apgeochem.2022.105534
39. Aly M.M., Hamza M.F. A Review: Studies on Uranium Removal Using Different Techniques. Overview. J. Dispers. Sci. Technol. 2013. 34(2): 182. https://doi.org/10.1080/01932691.2012.657954
40. Mal'tseva T.V., Yatsenko T.V., Kudelko E.O., Belyakov V.N. The effect of introduction of manganese hydroxide and hydrated aluminum oxide on the pore structure and surface charge of Zr(IV), Ti(IV), and Sn(IV) oxyhydrates. Russ. J. Appl. Chem. 2011. 84(5): 756. https://doi.org/10.1134/S107042721105003X
41. Mal'tseva T., Pal'chik A., Kudelko E., Vasilyuk S., Kazdobin K. Impact of surface properties of hydrated compounds based on ZrO2 on the value of ionic conduction. J. Water Chem. Techol. 2015. 37(1): 18. https://doi.org/10.3103/S1063455X15010051
42. Kudelko E., Mal'tseva T., Belyakov V. Sorption of Cr(VI) ions by oxyhydrates of MxAl1− x Oy·nH2O composition, where M is Zr(IV), Ti(IV), or Sn(IV). Colloid J. 2012. 74(3): 313. https://doi.org/10.1134/S1061933X12010073
43. Maltseva T.V., Kudelko E.O., Belyakov V.N. Adsorption of Cu(II), Cd(II), Pb(II), Cr(VI) by double hydroxides on the basis of Al oxide and Zr, Sn, and Ti oxides. Russ. J. Phys. Chem. A. 2009. 83(13): 2336. https://doi.org/10.1134/S0036024409130263
44. Wang C.L., Li Y., Liu C.L. Sorption of uranium from aqueous solutions with graphene oxide. J. Radioanal. Nuclear Chem. 2015. 304(3): 1017. https://doi.org/10.1007/s10967-014-3855-x
45. Akcay H. Aqueous speciation and pH effect on the sorption behavior of uranium by montmorillonite. J. Radioanal. Nucl. Chem. 1998. 237: 133. https://doi.org/10.1007/BF02386676
46. Zakutevskyy O.I., Psareva T.S., Strelko V.V. Sorption of U(VI) ions on sol-gel-synthesized amorphous spherically granulated titanium phosphates. Russ. J. Appl. Chem. 2012. 85(9): 1366. https://doi.org/10.1134/S107042721209011X
47. Missana T., Maffiotte C., Garcı́a-Gutiérrez M. Surface reactions kinetics between nanocrystalline magnetite and uranyl. J. Colloid. Interface Sci. 2003. 261(1): 154. https://doi.org/10.1016/S0021-9797(02)00227-8
48. Das D., Sureshkumar M.K., Koley S., Mithal N., Pillai C.G.S. Sorption of uranium on magnetite nanoparticles. J. Radioanal. Nucl. Chem. 2010. 285: 447. https://doi.org/10.1007/s10967-010-0627-0
49. El Aamrani S., Giménez J., Rovira M., Seco F., Grivé M., Bruno J., Duro L., de Pablo J. A spectroscopic study of uranium(VI) interaction with magnetite. Appl. Surf. Sci. 2007. 253(21): 8794. https://doi.org/10.1016/j.apsusc.2007.04.076
50. Missana T., García-Gutiérrez M., Fernańdez V. Uranium (VI) sorption on colloidal magnetite under anoxic environment: experimental study and surface complexation modelling. Geochim. Cosmochim. Acta. 2003. 67(14): 2543. https://doi.org/10.1016/S0016-7037(02)01350-9
51. El-Maghrabi H.H., Abdelmaged S.M., Nada A.A., Zahran F., El-Wahab S.A., Yahea D., Hussein G.M., Atrees M.S. Magnetic graphene based nanocomposite for uranium scavenging. J. Hazard. Mater. 2017. 322: 370. https://doi.org/10.1016/j.jhazmat.2016.10.007
52. Amini A., Khajeh M., Oveisi A.R., Daliran S., Ghaffari-Moghaddam M., Delarami H.S. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(VI) from aqueous solutions. J. Ind. Eng. Chem. 2021. 93: 322. https://doi.org/10.1016/j.jiec.2020.10.008
53. Kolomiiets Y.O., Dzyazko Y.S. Sorbents based on non-carbonized vegetable raw materials. Ukr. Chem. J. 2022. 88(5): 37. https://doi.org/10.33609/2708-129X.88.05.2022.37-68
54. Quek S.Y., Wase D.A.J., Forster C.F. The use of sago waste for the sorption of lead and copper. Water SA. 1998. 24(3): 251.
55. Sanyahumbi D., Duncan J.R., Zhao M., van Hille R. Removal of lead from solution by the non-viable biomass of the water fern Azolla filiculoi. Biotechnol. Lett. 1998. 20: 745. https://doi.org/10.1023/A:1005386703592
56. Iqbal M., Saeed A., Zafar S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for uderstanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009. 164(1): 161. https://doi.org/10.1016/j.jhazmat.2008.07.141
57. Pagnanelli F., Mainelli S., Vegliò F., Toro L. Heavy metal removal by olive pomace: biosorbent characterisation and equilibrium modelling. Chem. Eng. Sci. 2003. 58(20): 4709. https://doi.org/10.1016/j.ces.2003.08.001
58. Singh K.K., Talat M., Hasan S.H. Removal of lead from aqueous solutions by agricultural waste maize bran. Bioresource Technol. 2006. 97(16): 2124. https://doi.org/10.1016/j.biortech.2005.09.016
59. Karnitz O., Gurgel L.V.A., De Melo J.C.P., Botaro V.R., Melo T.M.S., Gil L.F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technol. 2007. 98(6): 1291. https://doi.org/10.1016/j.biortech.2006.05.013
60. Kolomiiets Y.O., Palchik O.V., Dzyazko Yu.S., Yatsenko T.V., Ponomaryova L.M., Ogenko V.M. Sorbents based on biopolymers of different origin containing magnetite for removal of oil products and toxic ions from water. Him. Fiz. Tehnol. Poverhni. 2023. 14(1): 121. https://doi.org/10.15407/hftp14.01.121
61. Noli F., Kapashi E., Kapnisti M. Biosorption of uranium and cadmium using sorbents based on Aloe vera wastes. J. Environ. Chem. Eng. 2019. 7(2): 102985. https://doi.org/10.1016/j.jece.2019.102985
62. Sirry S.M., Aldakhil F., Alharbi O. M. L., Ali I. Chemically treated date stones for uranium (VI) uptake and extraction in aqueous solutions. J. Mol. Liq. 2019. 273: 192. https://doi.org/10.1016/j.molliq.2018.10.018
63. Noli F., Kapashi E., Avgerinou A. Uranium and thorium retention onto sorbents from rawand modified pomegranate peel. Water Air Soil Pollut. 2021. 232(10): 437. https://doi.org/10.1007/s11270-021-05384-w
64. Zhang X.T., Jiang D.M., Xiao Y.Q., Chen J.C., Hao S., Xia L.S. Adsorption of uranium (VI) from aqueous solution by modified rice stem. J. Chem. 2019. 2019: 6409504. https://doi.org/10.1155/2019/6409504
65. Yi Z.J., Yao J., Chen H.L., Wang F., Yuan Z.M., Liu X. Uranium biosorption from aqueous solution onto Eichhornia crassipes. J. Environ. Radioact. 2016. 154: 43. https://doi.org/10.1016/j.jenvrad.2016.01.012
66. Li X., Li F., Jin Y., Jiang C. The uptake of uranium by tea wastes investigated by batch, spectroscopic and modeling techniques. J. Mol. Liq. 2015. 209: 413. https://doi.org/10.1016/j.molliq.2015.06.014
67. Bakather O.Y., Zouli N., Abutaleb A., Mahmoud M.A., Daher A., Hassan M., Eldoma M.A., Alasweda S.O., Fowad A.A. Uranium (VI) ions uptake from liquid wastes by Solanum incanum leaves: Biosorption, desorption and recovery. Alexandria Eng. J. 2020. 59(3): 1495. https://doi.org/10.1016/j.aej.2020.03.013
68. Šabanović E., Muhić-Šarac T., Nuhanović M., Memić M. Biosorption of uranium(VI) from aqueous solution by Citrus limon peels: kinetics, equlibrium and batch studies. J. Radioanal. Nucl. Chem. 2018. 319(1): 425. https://doi.org/10.1007/s10967-018-6358-3
69. Smječanin N., Nuhanović M., Sulejmanović J. Study of uranium biosorption process in aqueous solution by red beet peel. J. Radioanal. Nucl. Chem. 2022. 331: 1459. https://doi.org/10.1007/s10967-022-08192-6
70. Nuhanović M., Grebo M., Draganović S., Memić M., Smječanin N. Uranium (VI) biosorption by sugarbeet pulp: equilibrium, kinetic and thermodynamic studies. J. Radioanal. Nucl. Chem. 2019. 322(3): 2065. https://doi.org/10.1007/s10967-019-06877-z
71. Ghandoor H., Zidan H., Mostafa, Khalil M., Ismail M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 2012. 7(6): 5734. https://doi.org/10.1016/S1452-3981(23)19655-6
72. Saavedra-Labastida E., Díaz-Nava M.C., Illescas J. Comparison of the removal of an anionic dye from aqueous solutions by adsorption with organically modified clays and their composites. Water Air Soil Pollut. 2019. 230: 88. https://doi.org/10.1007/s11270-019-4131-z
73. Kadam B.V., Maiti B., Sathe R.M. Selective spectrophotometric method for the determination of uranium(VI). Analyst. 1981. 106(1263): 724. https://doi.org/10.1039/an9810600724
74. Kenney J.P.L., Kirby M.E., Cuadros J., Weiss D.J. A conceptual model to predict uranium removal from aqueous solutions in water-rock systems associated with low- and intermediate-level radioactive waste disposal. RSC Adv. 2017. 7(13): 7876. https://doi.org/10.1039/C6RA26773D
75. Ho Y.S., McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999. 34(5): 451. https://doi.org/10.1016/S0032-9592(98)00112-5
76. Largitte L., Pasquier R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016. 109: 495. https://doi.org/10.1016/j.cherd.2016.02.006
77. Al-Ghouti M.A., Da'ana D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 3030. 393: 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
78. Dzyazko Yu.S., Rozhdestvenska L.M., Kudelko K.O., Fedina I.V., Ponomaryova L.M., Nikovska G.M., Dzyazko O.G. Hydrated iron oxide embedded to natural zeolite: effect of nanoparticles and microparticles on sorption properties of composites. Water Air Soil Pollut. 2022. 233(6): 205. https://doi.org/10.1007/s11270-022-05681-y
DOI: https://doi.org/10.15407/hftp15.04.561
Copyright (©) 2024 O. V. Perlova, Yu. S. Dzyazko, M. E. Karimova, O. V. Palchik, L. M. Ponomaryova, E. O. Kolomiiets
This work is licensed under a Creative Commons Attribution 4.0 International License.