Хімія, фізика та технологія поверхні, 2025, 16 (1), 104-114.

Структурна характеристика та біоактивність (in vitro) синтезованого золь-гель скла 60S, легованого Cu



DOI: https://doi.org/10.15407/hftp16.01.104

A. P. Kusyak, O. I. Oranska, D. Marcin Behunova, O. D. Shchehlov, N. V. Kusiak, V. A. Poniatovskyi, V. A. Dubok, V. S. Chornyi, P. P. Gorbyk

Анотація


Великий інтерес до різних типів біоактивного скла (BG) пояснюється високою біоактивністю, ангіогенними, остеогенними властивостями. У зв’язку з цим розробка металолегованого BG як матеріал для регенерації кісткової тканини привертає увагу наукової спільноти. З цієї мотивації дане дослідження зосереджено на дослідженні структури та біоактивності в умовах in vitro легованого міддю біоактивного скла 60S.

У даному дослідженні золь-гель методом синтезовано наноструктуровані зразки скла 60S зі складом (мол. %) 60 % SiO2, 36 – x % CaO, 4 % P2O5, легованого Cu (x = 0.25, 0.5 мол. %). Біологічну активність синтезованого матеріалу оцінювали методом in vitro. Динаміка утворення гідроксиапатиту (ГА), що сприяє формуванню ефективних зв’язків з кістками та м’якими тканинами під час занурення в симульовану рідину організму (SBF Kokubo), була оцінена за допомогою FTIR, XRD, SEM-EDX та ICP-AES.

Було виявлено, що збільшення вмісту легуючого елемента (зразок з 0.5 мол. % Cu) підвищує схильність BG до гідролізу, що проявляється в вищій активності іонообмінних процесів за участі іонних компонентів SBF. Крім того, утворення слабкокристалічного НА та фази кальциту при контакті з SBF характерно для обох зразків, що підтверджує біоактивність синтезованих зразків в умовах in vitro. Представлені результати є необхідними для подальших розробок та досліджень BG легованих Cu як перспективного матеріалу з остеопродуктивними, остеокондуктивними та антибактеріальними властивостями для тканинної регенерації та тканинної інженерії.


Ключові слова


біоскло; золь-гель; легування міддю; біоактивність; кісткова регенерація

Посилання


1. Kusyak A.P., Petranovska A.L., Dubok V.A., Chornyy V.S., Bur'yanov O.A., Korniichuk N.M., Gorbyk P.P. Adsorption immobilization of chemotherapeutic drug cisplatin on the surface of sol-gel bioglass 60S. Funct. Mater. 2021. 28(1): 97.

2. Turanska S.P., Kusyak A.P., Petranovska A.L., Turov V.V., Gorbyk P.P., Dubok V.A., Bur'yanov O.A, Chornyi V.S., Sobolevsky Yu.L., Chekhun V.F. Bioglass and its application in modern treatment of osteooncological diseases. Surface. 2021. 13(28): 206. https://doi.org/10.15407/Surface.2021.13.206

3. Kaya S., Cresswell M., Boccaccini A.R. Mesoporous silica-based bioactive glasses for antibiotic-free antibacterial applications. Mater. Sci. Eng. C. 2018. 83: 99. https://doi.org/10.1016/j.msec.2017.11.003

4. Bari A., Bloise N., Fiorilli S., Novajra G., Vallet-Regí M., Bruni G., Torres-Pardo A., González-Calbet J.M., Visai L., Vitale-Brovarone C. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017. 55: 493. https://doi.org/10.1016/j.actbio.2017.04.012

5. Bari A., Molino G., Fiorilli S., Vitale-Brovarone C. Novel multifunctional strontium-copper co-substituted mesoporous bioactive particles. Mater Lett. 2018. 223: 37. https://doi.org/10.1016/j.matlet.2018.04.006

6. Cacciotti I. Bivalent cationic ions doped bioactive glasses: the influence of magnesium, zinc, strontium and copper on the physical and biological properties. J. Mater. Sci. 2017. 52(15): 8812. https://doi.org/10.1007/s10853-017-1010-0

7. Nandi S.K., Mahato A., Kundu B., Mukherjee P. Doped Bioactive Glass Materials in Bone Regeneration. 2016. [Internet]. Advanced Techniques in Bone Regeneration. Chapter 13. 275. https://doi.org/10.5772/63266

8. Mourino V., Cattalini J.P., Boccaccini A.R. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface. 2012. 9(68): 401. https://doi.org/10.1098/rsif.2011.0611

9. Gerhardt L.C., Widdows K.L., Erol M.M., Burch C.W., Sanz Herrera J.A., Ochoa I., Stämpfli R., Roqan I.S., Gabe S., Ansari T., Boccaccini A.R. The pro-angiogenic properties of multifunctional bioactive glass composite scaffolds. Biomater. 2011. 32(17): 4096. https://doi.org/10.1016/j.biomaterials.2011.02.032

10. Rahaman M.N., Day D.E., Sonny Bal B., Fu Q., Jung S.B., Bonewald L.F., Tomsia A.P. Bioactive glass in tissue engineering. Acta Biomater. 2011. 7(6):2355. https://doi.org/10.1016/j.actbio.2011.03.016

11. Rude R.K., Gruber H.E. Magnesium deficiency and osteoporosis: animal and human observations. J. Nutr. Biochem. 2004. 15(12): 710. https://doi.org/10.1016/j.jnutbio.2004.08.001

12. Peretz A., Papadopoulos T., Willems D., Hotimsky A., Michiels N., Siderova V., Bergmann P., Neve J. Zinc supplementation increases bone alkaline phosphatase in healthy men. J. Trace Elem. Med. Biol. 2001. 15(2-3): 175. https://doi.org/10.1016/S0946-672X(01)80063-8

13. Tapiero H., Townsend D.M., Tew K.D. Trace elements in human physiology and pathology. Copper. Biomed. Pharmacother. 2003. 57(9): 386. https://doi.org/10.1016/S0753-3322(03)00012-X

14. Li X., Wang X., He D., Shi J. Synthesis and characterization of mesoporous CaO-MO-SiO2-P2O5 (M = Mg, Zn, Cu) bioactive glasses/composites. J. Mater. Chem. 2008. 18(34): 4103. https://doi.org/10.1039/b805114c

15. Hoppe A., Güldal N.S., Boccaccini A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomater. 2011. 32(11): 2757. https://doi.org/10.1016/j.biomaterials.2011.01.004

16. Hench L.L., Thompson I. Twenty-first century challenges for biomaterials. J. R. Soc. Interface. 2010. 7(4): 379. https://doi.org/10.1098/rsif.2010.0151.focus

17. Jones J.R., Ehrenfried L.M., Hench L.L. Optimising bioactive glass scaffolds for bone tissue engineering. Biomater. 2006. 27(7): 964. https://doi.org/10.1016/j.biomaterials.2005.07.017

18. Hoppe A., Güldal Nusret S., Boccaccini Aldo R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomater. 2011. 32(11): 2757. https://doi.org/10.1016/j.biomaterials.2011.01.004

19. Bielby R.C., Christodoulou I.S., Pryce R.S., Radford W.J.P., Hench L.L., Polak J.M. Time-and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng. 2004. 10(7-8): 1018. https://doi.org/10.1089/ten.2004.10.1018

20. Bielby R.C., Pryce R.S., Hench L.L., Polak J.M. Enhanced Derivation of Osteogenic Cells from Murine Embryonic Stem Cells after Treatment with Ionic Dissolution Products of 58S Bioactive Sol-Gel Glass. Tissue Eng. 2005. 11(3-4): 479. https://doi.org/10.1089/ten.2005.11.479

21. Christodoulou I., Buttery L.D.K., Saravanapavan P., Tai G., Hench L.L., Polak J.M. Doseand time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J. Biomed. Mater. Res. B Appl. Biomater. 2005. 74(1):529. https://doi.org/10.1002/jbm.b.30249

22. Jones J.R., Ehrenfried L.M., Saravanapavan P., Hench L.L. Controlling ion release from bioactive glass foam scaffolds with antibacterial properties. J. Mater. Sci. Mater. Med. 2006. 17(11): 989. https://doi.org/10.1007/s10856-006-0434-x

23. Gorustovich A.A., Roether J.A., Boccaccini A.R. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng. Part B Rev. 2009. 16(2): 199. https://doi.org/10.1089/ten.teb.2009.0416

24. Yazar M., Sarban S., Kocyigit A., Isikan U.E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol. Trace Elem. Res. 2005. 106(2): 123. https://doi.org/10.1385/BTER:106:2:123

25. Wu C., Zhou Y., Xu M., Han P., Chen L., Chang J., Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 2013. 34(2): 422. https://doi.org/10.1016/j.biomaterials.2012.09.066

26. Wang H., Zhao S., Zhou J., Shen Y., Huang W., Zhang C., Rahaman M.N., Wang D. Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulat‐ ing osteogenesis and angiogenesis in bone healing. J. Mater. Chem. B. 2014. 2(48): 8547. https://doi.org/10.1039/C4TB01355G

27. Rath S.N., Brandl A., Hiller D., Hoppe A., Gbureck U., Horch R.E., Boccaccini A.R., Kneser U. Bioactive copperdoped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS One. 2014. 9(12): e113319. https://doi.org/10.1371/journal.pone.0113319

28. Kong N., Lin K., Li H., Chang J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J. Mater. Chem. B. 2014. 2(8): 1100. https://doi.org/10.1039/C3TB21529F

29. Shendage S.S., Gaikwad K., Kachare K., Kashte S., Ghule A.V. In vitro and in vivo study of copper-doped bioactive glass for bone regeneration application. Mater. Chem. Phys. 2024. 313: 128789. https://doi.org/10.1016/j.matchemphys.2023.128789

30. Alasvand N., Behnamghader A., Milan P.B., Simorgh S., Mobasheri A., Mozafari M. Tissue-engineered small-diameter vascular grafts containing novel copper-doped bioactive glass biomaterials to promote angiogenic activity and endothelial regeneration. Mater. Today Bio. 2023. 20: 100647. https://doi.org/10.1016/j.mtbio.2023.100647

31. Chitra S., Bargavi P., Balasubramaniam M., Chandran R. Riju, Balakumar S. Impact of copper on in-vitro biomineralization, drug release efficacy and antimicrobial properties of bioactive glasses. Mater. Sci. Eng. C. 2019. 313: 110598. https://doi.org/10.1016/j.msec.2019.110598

32. Gérard C., Bordeleau L.J., Barralet J., Doillon C.J. The stimulation of angiogenesis and collagen deposition by copper. Biomater. 2010. 31(5): 824. https://doi.org/10.1016/j.biomaterials.2009.10.009

33. Kusyak A.P., Dubok V.A., Chornyi V.S, Petranovska A.L., Gorbyk P.P., Abudayeh A.H. Features of biodegradation of sol-gel bioactive glass 60S doped with Ga, Ge. Mol. Cryst. Liq. Cryst. 2021. 719(1): 29. https://doi.org/10.1080/15421406.2020.1862457

34. Kusyak A., Oranska O., Marcin Behunová D., Petranovska A., Chornyi V., Bur'yanov O., Dubok V., Gorbyk P. XRD, EDX and FTIR study of the bioactivity of 60S glass doped with La and Y under in vitro conditions. Him. Fiz. Tehnol. Poverhni. 2023. 14(1): 93. https://doi.org/10.15407/hftp14.01.093

35. Chatterjee A.K., Chakraborty R., Basu T. Mechanism of antibacterial activity of copper nanoparticles. Nanotechnol. 2014. 25(13): 135101. https://doi.org/10.1088/0957-4484/25/13/135101

36. Mehtar S., Wiid I., Todorov S.D. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: An in-vitro study. J. Hosp. Infect. 2008. 68(1): 45. https://doi.org/10.1016/j.jhin.2007.10.009

37. Liu C., Fu X., Pan H., Wan P., Wang L., Tan L., Wang K., Zhao Y., Yang K., Chu P.K. Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci. Rep. 2016. 6: 27374. https://doi.org/10.1038/srep27374

38. Nam P.T., Thom N.T., Phuong N.T., Xuyen N.T., Hai N.S., Anh N.T., Dung P.T., Thanh D.T.M. Synthesis, characterization and antimicrobial activity of copper doped hydroxyapatite. Vietnam J. Chem. 2018. 56(6): 672. https://doi.org/10.1002/vjch.201800068

39. Pogosova M.A., Kazin P.E., Tretyakov Y. Synthesis and characterisation of copper doped Ca-Li hydroxyapatite. Nucl. Instrum. Methods Phys. Res., Sect. B. 2012. 284: 33. https://doi.org/10.1016/j.nimb.2011.08.048

40. Li Y., Ho J., Ooi C.P. Antibacterial efficacy and cytotoxicity studies of copper(II) and titanium(IV) substituted hydroxyapatite nanoparticles. Mater. Sci. Eng. C. 2010. 30(8): 1137. https://doi.org/10.1016/j.msec.2010.06.011

41. Chi W., Zou J., Ai F., Lin Y., Li W., Cao C., Yang K., Zhou K. Research of Cu-Doped Hydroxyapatite Microbeads Fabricated by Pneumatic Extrusion Printing. Materials. 2019. 12(11): 1769. https://doi.org/10.3390/ma12111769

42. Milković L., Hoppe A., Detsch R., Boccaccini A.R., Zarkovic N. Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cellsin vitro. J. Biomed. Mater. Res. Part A. 2013. 102(10): 3556. https://doi.org/10.1002/jbm.a.35032

43. Varmette E.A., Nowalk J.R., Flick L.M., Hall M.M. Abrogation of the inflammatory response in LPS-stimulated RAW 264.7 murine macrophages by Zn- and Cu-doped bioactive sol-gel glasses. J. Biomed. Mater. Res. Part A. 2009. 90(2): 317. https://doi.org/10.1002/jbm.a.32098

44. Bonici A., Lusvardi G., Malavasi G., Menabue L., Piva A. Synthesis and characterization of bioactive glasses functionalized with Cu nanoparticles and organic molecules. J. Eur. Ceram. Soc. 2012. 32(11): 2777. https://doi.org/10.1016/j.jeurceramsoc.2012.02.058

45. Neel E.A., Ahmed I., Pratten J., Nazhat S., Knowles J.C. Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomater. 2005. 26(15): 2247. https://doi.org/10.1016/j.biomaterials.2004.07.024

46. Li J., Zhai D., Lv F., Yu Q., Ma H., Yin J., Yi Z., Liu M., Chang J., Wu C. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater. 2016. 36: 2546. https://doi.org/10.1016/j.actbio.2016.03.011

47. Kong N., Lin K., Li H., Chang J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J. Mater. Chem. B. 2014. 2(8): 1100. https://doi.org/10.1039/C3TB21529F

48. Zhao S., Wang H., Zhang Y., Huang W., Rahaman M.N., Liu Z., Wang D., Zhang C. Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater. 2015. 14: 185. https://doi.org/10.1016/j.actbio.2014.12.010

49. Wang H., Zhao S. C., Zhou J., Shen Y.Q., Huang W.H., Zhang C.Q., Rahaman M.N., Wang D. Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J. Mater. Chem. B. 2014. 2(48): 8547. https://doi.org/10.1039/C4TB01355G

50. Bari A., Bloise N., Fiorilli S., Novajra G., Vallet-Regí M., Bruni G., Torres-Pardo A., González-Calbet J.M., Visai L., Vitale-Brovarone C. Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta Biomater. 2017. 55: 493. https://doi.org/10.1016/j.actbio.2017.04.012

51. Bains R., Sharma P., Mir R.A., Jeet S., Kaur G., Pandey O.P. Influence of CuO/MgO ratio on the gene expression, cytocompatibilty, and antibacterial/anticancerous/analgesic drug loading kinetics for (15-x) CuO-xMgO-10P2O5-60SiO2-10CaO-5ZnO (2.5 ≤ x ≤ 12.5) mesoporous bioactive glasses. J. Biomed. Mater. Res. Part A. 2018. 106(8): 2116. https://doi.org/10.1002/jbm.a.36415

52. Moghanian A., Ghorbanoghli A., Kazem-Rostami M., Pazhouheshgar A., Salari E., Yazdi M.S., Alimardani T., Jahani H., Jazi F.S., Tahriri M. Novel antibacterial Cu/Mg-substituted 58S-bioglass: Synthesis, characterization and investigation of in vitro bioactivity. Int. J. Appl. Glas. Sci. 2020. 11(4): 685. https://doi.org/10.1111/ijag.14510

53. Hoppe A., Meszaros R., Sta¨hli C., Romeis S., Schmidt J., Peukert W., Marelli B.,. Nazhat Sh.N., Wondraczek L., Lao J., Jallotf E., Boccaccini A.R. In vitro reactivity of Cu doped 45S5 Bioglass derived scaffolds for bone tissue engineering. J. Mater. Chem. B. 2013. 1(41): 5659. https://doi.org/10.1039/c3tb21007c

54. Dubok V. A. Bioceramics: yesterday, Today, Tomorrow. Powder Metall. Metal Ceram. 2000. 39(7-8): 381. https://doi.org/10.1023/A:1026617607548

55. Wers E., Bunetel L., Oudadesse H., Lefeuvre B., Lucas-Girot A., Mostafa A., Pellen P. Effect of copper and zinc on the bioactivity and cells viability of bioactive glasses. Bioceram. Dev. Appl. 2013. S1: 013.

56. Wu C., Zhou Y., Xu M., Han P., Chen L., Chang J., Xiao Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomater. 2013. 34(2): 422. https://doi.org/10.1016/j.biomaterials.2012.09.066

57. Wers E., Oudadesse H., Lefeuvre B., Lucas-Girot A., Rocherulle' J., Lebullenger R. Excess entropy and thermal behavior of Cu- and Ti-doped bioactive glasses. J. Therm. Anal. Calorim. 2014. 117(2): 579. https://doi.org/10.1007/s10973-014-3731-5

58. Branda F., Arcobello-Varlese F., Costantini A., Luciani G. Effect of the substitution of M2O3 (M = La, Y, In, Ga, Al) for CaO on the bioactivity of 2.5CaO-2SiO2 glass. Biomater. 2002. 23(3): 711. https://doi.org/10.1016/S0142-9612(01)00173-9

59. Bejarano J., Caviedes P., Palza H. Sol-gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater. 2015. 10(2): 025001. https://doi.org/10.1088/1748-6041/10/2/025001

60. Kokubo T., Kushitani H., Ohtsuki C., Sakka S., Yamamuro T. Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J. Mater. Sci. Mater. Med. 1992. 3(2): 79. https://doi.org/10.1007/BF00705272

61. Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomater. 2006. 27(15): 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017




DOI: https://doi.org/10.15407/hftp16.01.104

Copyright (©) 2025 A. P. Kusyak, O. I. Oranska, D. Marcin Behunova, O. D. Shchehlov, N. V. Kusiak, V. A. Poniatovskyi, V. A. Dubok, V. S. Chornyi, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.