Хімія, фізика та технологія поверхні, 2011, 2 (2), 164-170.

Властивості нанесеного нанорозмірного монокарбіду вольфраму, синтезованого під дією ультразвуку



L. A. Vartikyan, V. T. Minasyan, V. A. Zazhigalov

Анотація


Показано, що введення ультразвукових коливань в область плазми при плазмо-хімічному методі одержання карбіду вольфраму дозволяє синтезувати нанодисперсний продукт з вузьким діапазоном розподілу частинок за розмірами (60 ± 10  нм). Нанесення нанодисперсного карбіду вольфраму на поверхню оксиду алюмінію і клиноптилоліту веде до формування наноструктур на поверхні носія. Синтезовані нанесені зразки мають високу активність і селективність в реакції дегідрування циклогексану. Встановлено, що використання ультразвуку на стадії нанесення активного компонента визначає його високодисперсний і рівномірний розподіл по поверхні носія. Показано, що дезактивація зразків в реакції перетворення циклогексану пов’язана з формуванням вуглецевих відкладень на поверхні. Встановлено, що ефективне очищення поверхні зразків і регенерація їхніх каталітичних властивостей може бути реалізована шляхом ультразвукової обробки в середовищі ацетону або води. Показано, що при цьому відбувається як зняття вуглецевої плівки, так і формування нових за своєю структурою поверхневих центрів, активних в реакції дегідрування циклогексану.

Повний текст:

PDF (Русский)

Посилання


Харламов А.И., Рафал А.Н. Закономерности изменения каталитической активности металлоподобных соединений // Катализ и катализаторы. – 1981. – № 19. – С. 85–90.

Соловйов С.О. Дизайн і функціональні властивості структурованих каталізаторів для гетерогенних газофазних окисно-відновних перетворень // Автореф. дис. ... д-ра хім. наук: 02.00.15. – Інст. фіз. хімії ім. Л.В. Писаржевського НАН України, Київ, 2010. – 39 с.

Levy R.B., Boudart M. Platinum-like behaviour of tungsten carbide in surface catalysis // Science. – 1973. – V. 181, N 4099. – P. 547–549.

Delplancke J.-L., Dille J., Reisse J. et al. Magnetic nanopowders: Ultrasound-assisted electrochemical preparation and properties // Chem. Mater. – 2000. – V. 12, N 4. – P. 946–955.

Suslick K.S., Hyeon T., Fang M. Nanostructured materials generated by high intensity ultrasound: Sonochemical synthesis and catalytic studies // Chem. Mater. – 1996. – V. 8, N 8. – P. 2172–2179.

Emerson S.C., Coote C.F., Boote H. et al. The ultrasonic synthesis of nanostructured metal ozide catalysts // Preparation of Catalysts VII: Proc. 7th Intern. Symp. Scientific Bases for the Preparation of Heterogeneous Catalysts. – Amsterdam: Elsevier. – 1998. – P. 773–785.

Kelling S., Saito N., Inoue Y., King D.A. Surface morphological changes induced in catalysts by acoustic waves // Appl. Surf. Sci. – 1999. – V. 150, N 1–4. – P. 47–57.

Adewuyi Y.G. Sonochemistry: Environmental science and engineering applications // Ind. Eng. Chem. Res. – 2001. – V. 40, N 22. – P. 4681–4715.

Jiang L.P., Xu S., Zhu J.M. et al. Ultrasonic assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings // Inorg. Chem. – 2004. – V. 43, N 19. – P. 5877–5863.

Khachatryan A., Sarkissyan R., Hassratyan L., Khachatryan W. Influence of ultrasound on nanostructural iron formed by electrochemical reduction // Ultrason. Sonochem. – 2004. – V. 11, N 6. – P. 405–408.

Сульман М.Г. Влияние ультразвука на каталитические процессы // Успехи химии. – 2000. – Т. 69, № 2. – С. 178–191.

Zhang L., Wang W., Yang J. et al. Sonochemical synthesis of nanocrystalline Bi2O3 as a visible-light-driven photocatalyst // Appl. Catal. A. – 2006. – V. 308, N 1–2. – P. 105–110.

Perez A., Centeno M.A., Odriozola J.A. et al. The effect of ultrasound in the synthesis of clays used as catalysts in oxidation reactions // Catal. Today. – 2008. – V. 133–135. – P. 526–529.

Garibyan T.A., Muradyan A.A., Grigoryan R.R. et al. New methods of increasing the catalytic activity and selectivity in the oxidative conversion processes of methane and propylene // Catal. Today. – 1995. – V 24, N 3. – P. 249–250.

Gharibyan T.A., Minаsyan V.T., Grigoryan R.R., Muradyan A.A. Formation of radical in the process oxidative conversion of methane, ethane and ethylene over Sm2O3/MgO and Li2O/MgO catalysts subjected to ultrasonic treatment // Chemical Journal of Armenia. – 2002. – V. 55, N 4. – P. 8–17 (in Russian).

Григорян Р.Р., Вартикян Л.А., Гарибян Т.А., Зажигалов В.А. Использование природных цеолитов для создания катализаторов нейтрализации газовых выбросов. 1. Глубокое окисление метанола // Энерготехнологии и ресурсосбережение – 2008. – № 6. – C. 24–30.

Буянов Р.А. Закоксовывание катализаторов – Новосибирск: Наука, 1983. – 208 c.

Mason T.J., Lorimer J.P., Paniwnyk L. et al. The influence of sonification on the palladium-catalyzed dehydrogenation of tetrahydronaphthalene // J. Catal. – 1994. – V. 147, N 1. – P. 1–4.

Маргулис М.А. Звукохимические реакции и сонолюминесценция. – Москва: Химия, 1986. – 288 с.

Bianchi C.L., Carli R., Lanzani S. et al. Influence of ultrasound on the preparation of ruthenium catalysts supported on alumina // Ultrason. Sonochem. – 1994. – V. 1, N 1. – P. 47–49.




Copyright (©) 2011 L. A. Vartikyan, V. T. Мinasyan, V. A. Zazhigalov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.