Chemistry, Physics and Technology of Surface, 2013, 4 (2), 123-131.

Properties of Hexagon-Shaped Carbon Nanoclusters



DOI: https://doi.org/10.15407/hftp04.02.123

O. S. Karpenko, V. V. Lobanov, N. T. Kartel

Abstract


Equilibrium spatial structures of hexagon-shaped carbon nanoclusters (CNC) of С6–С216 size in the electronic ground-states were calculated by means of a density functional theory method (B3LYP, basis set 6-31 G**). Some relevant features were revealed:

- С6 and С24 CNCs are ground-state singlets, С54 and С150 – ground-state triplets, and С96 and С216 – ground-state quintets;

- the π-system of outer cyclic chains is only weakly bound to the π-system of the central part of the nanocluster;

- the single-electron energy level spectrum shows that the energy levels of vacant МОs in the outer cyclic chain are located within the energy interval of the highest occupied МОs.

These features have been explained on the basis of the distribution of spin density of the double-coordinated carbon atoms of the outer cyclic chain of the nanoclusters.


Full Text:

PDF

References


1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films. Science. 2004. 306(5696): 666. https://doi.org/10.1126/science.1102896

2. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. Two-dimension gas of massless Dirac fermions in grapheme. Nature. 2005. 438: 197. https://doi.org/10.1038/nature04233

3. Novoselov K.S., Jiang Z., Zhang Y., Morozov S.V., Stormer H.L., Zeitler U., Maan J.C., Boebinger G.S., Kim P., Geim A.K. Room-temperature quantum hall effect in graphene. Science. 2007. 315(5817): 1379. https://doi.org/10.1126/science.1137201

4. Giannozzi P., Car R., Scoles G. Oxygen adsorption on graphite and nanotubes. J. Chem. Phys. 2003. 118(3): 1003. https://doi.org/10.1063/1.1536636

5. Wehling T.O., Novoselov K.S., Morozov S.V., Vdovin E.E., Katsnelson M.I., Geim A.K., Lichtenstein A.I. Molecular doping of graphene. Nano Lett. 2008. 8(1): 173. https://doi.org/10.1021/nl072364w

6. Chernozatonskii1 L.A., Sorokin P.B., Brüning J.W. Two-dimensional semicon-ducting nanostructures based on single graphene sheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 2007. 91: 183103. https://doi.org/10.1063/1.2800889

7. Stampfer C., Güttinger J., Hellmüller S., Molitor F., Ensslin K., Ihn T. Energy gapsin etched graphene nanoribbons. Phys. Rev. Lett. 2009. 102: 056403. https://doi.org/10.1103/PhysRevLett.102.056403

8. Nakada K., Fujita V.G., Dresselhause M.S. Edge state in graphene ribbon: nanometer size effect and edge shape dependence. Phys. Rev. B. 1996. 54: 17954. https://doi.org/10.1103/PhysRevB.54.17954

9. Son Y.-W., Cohen M.L., Louie S.G. Half – metallic graphene nanoribbons. Nature. 2006. 444: 347. https://doi.org/10.1038/nature05180

10. Jiang D., Sumpter B.G., Dai S. The unique chemical reactivity of a graphene nanoribbon's zigzag edge. J. Chem. Phys. 2007. 126: 134701. https://doi.org/10.1063/1.2715558

11. Kaneko K., Ishii C., Ruike M., Kuwabara H. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons. Carbon. 1992. 30(7): 1075. https://doi.org/10.1016/0008-6223(92)90139-N

12. Rao A.M., Fung A.W.P., Dresselhaus M.S. Endo M. Structural characterization of heat-treated activated carbon fibers. J. Mater. Res. 1992. 7(7): 1788. https://doi.org/10.1557/JMR.1992.1788

13. Sato K., Noguchi M., Demachi A., Oki N., Endo M. A mechanism of lithium storage in disordered carbons. Science. 1994. 264(5158): 556. https://doi.org/10.1126/science.264.5158.556

14. Yazyev O.V., Katsnelson M.I. Magnetic correlations at graphene edges: basis for novel spintronics devices. Phys. Rev. Lett. 2008. 100: 047209. https://doi.org/10.1103/PhysRevLett.100.047209

15. Červenka J., Katsnelson M.I., Flipse C.F.J. Room-temperature ferromagnetism in graphite driven by two–dimensional networks of point defects. Nature Phys. 2009. 5: 840. https://doi.org/10.1038/nphys1399

16. Boukhvalov D.W., Katsnelson M.I. Chemical functionalization of graphene with defects. J. Phys. Condens. Matter. 2009. 21(34): 344205. https://doi.org/10.1088/0953-8984/21/34/344205

17. Kotakoski J., Krasheninnikov A.V., Nordlund K. Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Phys. Rev. B. 2006. 74: 245420. https://doi.org/10.1103/PhysRevB.74.245420

18. Kohn W., Sham L.S. Self-consistent equation including exchange and correlation effect. Phys. Rev. A. 1965. 140(4): 1133. https://doi.org/10.1103/PhysRev.140.A1133

19. Parr R.G., Yang W. Density-functional theory of atoms and molecules. (Oxford: Oxford Univ. Press, 1989).

20. Becke A.D. Density-functional thermo-chemistry. III. The role of exchange. J. Chem. Phys. 1993. 98: 5648. https://doi.org/10.1063/1.464913

21. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

22. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

23. Ohldag H., Tyliszszak T., Höhne R., Spemann D. π-Electron ferromagnetism in metal-free carbon probed bysoft X-ray dichroism. Phys. Rev. Lett. 2007. 98(18): 187204. https://doi.org/10.1103/PhysRevLett.98.187204

24. Son Y.-W., Cohen V.L., Louie S.G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006. 97: 216803. https://doi.org/10.1103/PhysRevLett.97.216803

25. De Groot R.A., Mueller F.M., van Engen P.G., Burchow R.H.J. New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 1983. 50(25): 2024. https://doi.org/10.1103/PhysRevLett.50.2024

26. Gurvich P.V., Karachentsev T.V., Kondratiev V.N. Chemical Bond Breakage Energies, Ionising Potentials, and Electron Affinity. (Moscow: Nauka, 1974). [in Russian].




DOI: https://doi.org/10.15407/hftp04.02.123

Copyright (©) 2013 O. S. Karpenko, V. V. Lobanov, N. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.