Gold Nanoshell Effect on Light-Harvesting in LH2 Complexes from Photosynthetic Bacteria
DOI: https://doi.org/10.15407/hftp04.02.157
Abstract
References
1. Zayats A.V., Smolyaninov I.I., Maradudin A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005. 408(3–4): 131. https://doi.org/10.1016/j.physrep.2004.11.001
2. Aslan K., Lakowicz J.R., Geddes C.D. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 2005. 9(5): 538. https://doi.org/10.1016/j.cbpa.2005.08.021
3. Tominaga J., Mihalcea C., Buechel D., Fukuda H., Nakano T., Atoda N., Fuji H., Kikukawa T. Local plasmon photonic transistor. Appl. Phys. Lett. 2001. 78(17): 2417. https://doi.org/10.1063/1.1367905
4. Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997. 78(9): 1667. https://doi.org/10.1103/PhysRevLett.78.1667
5. Shalaev V.M., Cai W.S., Chettiar U.K., Yuan H.-K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials. Opt. Lett. 2005. 30(24): 3356. https://doi.org/10.1364/OL.30.003356
6. Pendry J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000. 85(11): 3966. https://doi.org/10.1103/PhysRevLett.85.3966
7. Zhang W., Govorov A.O., Bryant G.W. Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect. Phys. Rev. Lett. 2006. 97(14): 146804. https://doi.org/10.1103/PhysRevLett.97.146804
8. Sadeghi S.M. Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticles conjugates. Phys. Rev. B. 2009. 79(23): 233309. https://doi.org/10.1103/PhysRevB.79.233309
9. Sugakov V.I., Vertsimakha G.V. Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle. Phys. Rev. B. 2010. 81(23): 235308. https://doi.org/10.1103/PhysRevB.81.235308
10. Anger P., Bharadwaj P., Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006. 96(11): 113002. https://doi.org/10.1103/PhysRevLett.96.113002
11. Kühn S., Hakanson U., Rogobete L., Sandoghdar V. Enhancement of single-molecule fluorescence. Using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006. 97(1): 017402. https://doi.org/10.1103/PhysRevLett.97.017402
12. Govorov A., Carmeli I. Hybrid structure composed of photosynthetic system and metalanoparticles: plasmons enhancement effect. Nano Lett. 2007. 7(3): 620. https://doi.org/10.1021/nl062528t
13. Mackowski S. Hybrid nanostructures for efficient light harvesting. J. Phys. Condens. Matter. 2010. 22(19): 193118. https://doi.org/10.1088/0953-8984/22/19/193102
14. Goliney I.Yu. Sugakov V.I., Valkunas L. Vertsimakha G.V. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria. Chem. Phys. 2012. 404: 116. https://doi.org/10.1016/j.chemphys.2012.03.011
15. Prodan E., Norlander P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 2003. 3(4): 543. https://doi.org/10.1021/nl034030m
16. Kalele S., Gosavi S.W., Urban J. Kulkarni S.K. Nanoshell particles: synthesis, properties and applications. Curr. Sci. 2006. 91(8): 1038.
17. Erickson T.A., Tunnell J.W. Gold nanoshells in biomedical applications. Nanomaterials for the Life Science. Mixed Metal Nanomaterials WILEY-VCH, Weinheim. 2009. 3: 1.
18. Blankenship R.E. Molecular Mechanisms of Photosynthesis. (Malden: Wiley-Blackwell, 2002). https://doi.org/10.1002/9780470758472
19. Hu X., Schulten K. How nature harvests sunlight. Phys. Today. 1997. 50(8): 28. https://doi.org/10.1063/1.881879
20. Van Grondelle R., Novoderezhkin V.I. Photosynthesis: Quantum design for a light trap. Nature. 2010. 463(7281): 614. https://doi.org/10.1038/463614a
21. Papiz M.Z., Prince S.M., Hawthornthwaite-Lawless A.M. McDermott G., Freer A.A., Isaacs N.W., Cogdell R.J. A model for the photosynthetic apparatus of purple bacteria. Trends in plant. Science. 1996. 1(6): 198. https://doi.org/10.1016/1360-1385(96)20005-6
22. McDermott G., Prince S.M., Freer A.A., Hawthornthwaite-Lawless A.M., Papiz M.Z., Cogdell R.J., Isaacs N.W. Crystal-structure of an integral membrane light-harvesting complex from photo-synthetic bacteria. Nature. 1995. 374(6522): 517. https://doi.org/10.1038/374517a0
23. Koepke J., Hu X., Muenke C., Schulten K., Hartmut M. The crystal structure of the light-harvesting complex II (B800–850) from Rhodo-spirillum molischianum. Structure. 1996. 4(5): 581. https://doi.org/10.1016/S0969-2126(96)00063-9
24. Novoderezhkin V., Razjivint A. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. Biophys. J. 1995. 68(3): 1089. https://doi.org/10.1016/S0006-3495(95)80283-3
25. Goliney I.Y., Sugakov V.I. Rare-gas precipitates in metals as quantum dots for polaritons. Phys. Rev. B. 2000. 62(16): 11177. https://doi.org/10.1103/PhysRevB.62.11177
26. Urboniene V., Vrublevskaja O., Gall A. et al. Temperature broadening of LH2 absorption in glycerol solution. Photosynth. Res. 2005. 86(1–2): 49. https://doi.org/10.1007/s11120-005-2748-9
27. Urboniene V., Vrublevskaja O., Trinkunas G., Gall A., Robert B., Valkunas L. Solvation effect of bacteriochlorophyll excitons in light-harvesting complexe LH2. Biophys. J. 2007. 93(6): 2188. https://doi.org/10.1529/biophysj.106.103093
28. Mostovoy M.V., Knoerster J. Statistics of optical spectra from single-ring aggregates and its application to LH2. J. Phys. Chem. B. 2000. 104: 12355. https://doi.org/10.1021/jp001519k
29. Gordell R.J., Konler J. Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example. Biochem. J. 2009. 422(2): 193. https://doi.org/10.1042/BJ20090674
30. Strümpfer J., Schultena K. Light harvesting complex II B850 excitation dynamics. J. Chem. Phys. 2009. 131(22):225101. https://doi.org/10.1063/1.3271348
31. Koolhaas M.H.C., Zwan G. van der, Grondelle R. van. Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems. J. Phys. Chem. B. 2000. 104(18): 4489. https://doi.org/10.1021/jp9918149
32. Blaber M.G., Arnold M.D., Ford M.J. Designing materials for plasmonic systems: the alkali–noble intermetallics. J. Phys. Condens. Matter. 2010. 22(11): 095501. https://doi.org/10.1088/0953-8984/22/9/095501
33. Cao M., Wang M., Gu N. Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J. Phys. Chem. C. 2009. 113(34): 1217. https://doi.org/10.1021/jp808000x
34. Westcott S.L., Jackson J.B., Radloff C., Halas N.J. Relative contributions to the plasmon lineshape of metal nanoshells. Phys. Rev. B. 2002. 66(15): 155431. https://doi.org/10.1103/PhysRevB.66.155431
35. Qian X, Park H.S. The influence of mechanical strain on the optical properties of spherical gold nanoparticles. J. Mech. Phys. Solids. 2010. 58(3): 330. https://doi.org/10.1016/j.jmps.2009.12.001
36. Pullerits T., Visscher K.J., Hess S., Sundström V., Freiberg A., Timpmann K., van Grondelle R. Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low intensity picosecond absorption and fluorescence kinetics. Biophys. J. 1994. 66(1): 236. https://doi.org/10.1016/S0006-3495(94)80770-2
37. Nagarajan V. Parson W.W. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Biochemistry. 1997. 36(8): 2300. https://doi.org/10.1021/bi962534b
DOI: https://doi.org/10.15407/hftp04.02.157
Copyright (©) 2013 I. Yu. Goliney, V. I. Sugakov, G. V. Vertsimakha
This work is licensed under a Creative Commons Attribution 4.0 International License.