Chemistry, Physics and Technology of Surface, 2013, 4 (2), 157-164.

Gold Nanoshell Effect on Light-Harvesting in LH2 Complexes from Photosynthetic Bacteria



DOI: https://doi.org/10.15407/hftp04.02.157

I. Yu. Goliney, V. I. Sugakov, G. V. Vertsimakha

Abstract


The paper presents results of a theoretical study of the way a small gold nanoshell affects the efficiency of photosynthesis in the peripheral light-harvesting complex LH2 from photosynthetic bacteria. The total effect of the nanoshell is the interplay of the enhancement of the light absorption due to the strong coupling of excitons on the LH2 ring with the surface plasmon modes and the additional quenching of the excitations introduced by the proximity of the metal. The range of parameters for which a gold nanoshell enhances the total efficiency of the light harvestings has been determined.

Full Text:

PDF

References


1. Zayats A.V., Smolyaninov I.I., Maradudin A.A. Nano-optics of surface plasmon polaritons. Phys. Rep. 2005. 408(3–4): 131. https://doi.org/10.1016/j.physrep.2004.11.001

2. Aslan K., Lakowicz J.R., Geddes C.D. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 2005. 9(5): 538. https://doi.org/10.1016/j.cbpa.2005.08.021

3. Tominaga J., Mihalcea C., Buechel D., Fukuda H., Nakano T., Atoda N., Fuji H., Kikukawa T. Local plasmon photonic transistor. Appl. Phys. Lett. 2001. 78(17): 2417. https://doi.org/10.1063/1.1367905

4. Kneipp K., Wang Y., Kneipp H., Perelman L.T., Itzkan I., Dasari R.R., Feld M.S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997. 78(9): 1667. https://doi.org/10.1103/PhysRevLett.78.1667

5. Shalaev V.M., Cai W.S., Chettiar U.K., Yuan H.-K., Sarychev A.K., Drachev V.P., Kildishev A.V. Negative index of refraction in optical metamaterials. Opt. Lett. 2005. 30(24): 3356. https://doi.org/10.1364/OL.30.003356

6. Pendry J.B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000. 85(11): 3966. https://doi.org/10.1103/PhysRevLett.85.3966

7. Zhang W., Govorov A.O., Bryant G.W. Semiconductor-metal nanoparticle molecules: hybrid excitons and non-linear Fano effect. Phys. Rev. Lett. 2006. 97(14): 146804. https://doi.org/10.1103/PhysRevLett.97.146804

8. Sadeghi S.M. Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticles conjugates. Phys. Rev. B. 2009. 79(23): 233309. https://doi.org/10.1103/PhysRevB.79.233309 

9. Sugakov V.I., Vertsimakha G.V. Localized exciton states with giant oscillator strength in quantum well in vicinity of metallic nanoparticle. Phys. Rev. B. 2010. 81(23): 235308. https://doi.org/10.1103/PhysRevB.81.235308

10. Anger P., Bharadwaj P., Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006. 96(11): 113002. https://doi.org/10.1103/PhysRevLett.96.113002

11. Kühn S., Hakanson U., Rogobete L., Sandoghdar V. Enhancement of single-molecule fluorescence. Using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006. 97(1): 017402. https://doi.org/10.1103/PhysRevLett.97.017402

12. Govorov A., Carmeli I. Hybrid structure composed of photosynthetic system and metalanoparticles: plasmons enhancement effect. Nano Lett. 2007. 7(3): 620. https://doi.org/10.1021/nl062528t

13. Mackowski S. Hybrid nanostructures for efficient light harvesting. J. Phys. Condens. Matter. 2010. 22(19): 193118. https://doi.org/10.1088/0953-8984/22/19/193102

14. Goliney I.Yu. Sugakov V.I., Valkunas L. Vertsimakha G.V. Effect of metal nanoparticles on energy spectra and optical properties of peripheral light-harvesting LH2 complexes from photosynthetic bacteria. Chem. Phys. 2012. 404: 116. https://doi.org/10.1016/j.chemphys.2012.03.011

15. Prodan E., Norlander P. Structural tunability of the plasmon resonances in metallic nanoshells. Nano Lett. 2003. 3(4): 543. https://doi.org/10.1021/nl034030m

16. Kalele S., Gosavi S.W., Urban J. Kulkarni S.K. Nanoshell particles: synthesis, properties and applications. Curr. Sci. 2006. 91(8): 1038.

17. Erickson T.A., Tunnell J.W. Gold nanoshells in biomedical applications. Nanomaterials for the Life Science. Mixed Metal Nanomaterials WILEY-VCH, Weinheim. 2009. 3: 1.

18. Blankenship R.E. Molecular Mechanisms of Photosynthesis. (Malden: Wiley-Blackwell, 2002). https://doi.org/10.1002/9780470758472

19. Hu X., Schulten K. How nature harvests sunlight. Phys. Today. 1997. 50(8): 28. https://doi.org/10.1063/1.881879

20. Van Grondelle R., Novoderezhkin V.I. Photosynthesis: Quantum design for a light trap. Nature. 2010. 463(7281): 614. https://doi.org/10.1038/463614a

21. Papiz M.Z., Prince S.M., Hawthornthwaite-Lawless A.M. McDermott G., Freer A.A., Isaacs N.W., Cogdell R.J. A model for the photosynthetic apparatus of purple bacteria. Trends in plant. Science. 1996. 1(6): 198. https://doi.org/10.1016/1360-1385(96)20005-6

22. McDermott G., Prince S.M., Freer A.A., Hawthornthwaite-Lawless A.M., Papiz M.Z., Cogdell R.J., Isaacs N.W. Crystal-structure of an integral membrane light-harvesting complex from photo-synthetic bacteria. Nature. 1995. 374(6522): 517.  https://doi.org/10.1038/374517a0

23. Koepke J., Hu X., Muenke C., Schulten K., Hartmut M. The crystal structure of the light-harvesting complex II (B800–850) from Rhodo-spirillum molischianum. Structure. 1996. 4(5): 581. https://doi.org/10.1016/S0969-2126(96)00063-9

24. Novoderezhkin V., Razjivint A. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. Biophys. J. 1995. 68(3): 1089. https://doi.org/10.1016/S0006-3495(95)80283-3

25. Goliney I.Y., Sugakov V.I. Rare-gas precipitates in metals as quantum dots for polaritons. Phys. Rev. B. 2000. 62(16): 11177. https://doi.org/10.1103/PhysRevB.62.11177

26. Urboniene V., Vrublevskaja O., Gall A. et al. Temperature broadening of LH2 absorption in glycerol solution. Photosynth. Res. 2005. 86(1–2): 49. https://doi.org/10.1007/s11120-005-2748-9

27. Urboniene V., Vrublevskaja O., Trinkunas G., Gall A., Robert B., Valkunas L. Solvation effect of bacteriochlorophyll excitons in light-harvesting complexe LH2. Biophys. J. 2007. 93(6): 2188. https://doi.org/10.1529/biophysj.106.103093

28. Mostovoy M.V., Knoerster J. Statistics of optical spectra from single-ring aggregates and its application to LH2. J. Phys. Chem. B. 2000. 104: 12355. https://doi.org/10.1021/jp001519k 

29. Gordell R.J., Konler J. Use of single-molecule spectroscopy to tackle fundamental problems in biochemistry: using studies on purple bacterial antenna complexes as an example. Biochem. J. 2009. 422(2): 193. https://doi.org/10.1042/BJ20090674

30. Strümpfer J., Schultena K. Light harvesting complex II B850 excitation dynamics. J. Chem. Phys. 2009. 131(22):225101. https://doi.org/10.1063/1.3271348

31. Koolhaas M.H.C., Zwan G. van der, Grondelle R. van. Local and nonlocal contributions to the linear spectroscopy of light-harvesting antenna systems. J. Phys. Chem. B. 2000. 104(18): 4489. https://doi.org/10.1021/jp9918149

32. Blaber M.G., Arnold M.D., Ford M.J. Designing materials for plasmonic systems: the alkali–noble intermetallics. J. Phys. Condens. Matter. 2010. 22(11): 095501. https://doi.org/10.1088/0953-8984/22/9/095501

33. Cao M., Wang M., Gu N. Optimized surface plasmon resonance sensitivity of gold nanoboxes for sensing applications. J. Phys. Chem. C. 2009. 113(34): 1217. https://doi.org/10.1021/jp808000x

34. Westcott S.L., Jackson J.B., Radloff C., Halas N.J. Relative contributions to the plasmon lineshape of metal nanoshells. Phys. Rev. B. 2002. 66(15): 155431. https://doi.org/10.1103/PhysRevB.66.155431

35. Qian X, Park H.S. The influence of mechanical strain on the optical properties of spherical gold nanoparticles. J. Mech. Phys. Solids. 2010. 58(3): 330. https://doi.org/10.1016/j.jmps.2009.12.001

36. Pullerits T., Visscher K.J., Hess S., Sundström V., Freiberg A., Timpmann K., van Grondelle R. Energy transfer in the inhomogeneously broadened core antenna of purple bacteria: a simultaneous fit of low intensity picosecond absorption and fluorescence kinetics. Biophys. J. 1994. 66(1): 236. https://doi.org/10.1016/S0006-3495(94)80770-2

37. Nagarajan V. Parson W.W. Excitation energy transfer between the B850 and B875 antenna complexes of Rhodobacter sphaeroides. Biochemistry. 1997. 36(8): 2300. https://doi.org/10.1021/bi962534b




DOI: https://doi.org/10.15407/hftp04.02.157

Copyright (©) 2013 I. Yu. Goliney, V. I. Sugakov, G. V. Vertsimakha

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.