Chemistry, Physics and Technology of Surface, 2013, 4 (2), 191-195.

Polypropylene Fibers Filled with Carbon Nanotubes: Mechanical Properties and Biocompatibility



DOI: https://doi.org/10.15407/hftp04.02.191

Yu. I. Sementsov, G. P. Prikhod’ko, N. T. Kartel, T. A. Aleksyeyeva, M. V. Tsebrenko

Abstract


There have been investigated the process of generating polypropylene fibers filled with carbon nanotubes, their mechanical properties and biocompatibility. It has been found that the increase in the content of carbon nanotubes in the fibers of PP-CNTs increases the viscosity of the melt and reduces the elasticity. Biocompatibility testing of the fiber of PP-BHT showed a nonmonotonic effect of the content of tubes for compatibility of the polymer matrix with living tissues. It has been revealed that the composite with CNT concentration of 1.0 wt.% causes the least disturbance of the living organism and the tissue reaction to the implant has a local aseptic character.

Full Text:

PDF

References


1. Sementsov Yu., Gavriluk N., Aleksyeyeva T., Lasarenko O. Polymer nanocomposites filled of multiwall carbon nanotubes for medical application. Nanosystems, nanomaterials, nanotechnologies. 2007. 5(2): 351.

2. Sementsov Yu., Gavriluk N., Prikhod'ko G. Aleksyeyeva T.A., Lazarenko O.N., Yanchenko V.V. Biocompatibility of Multiwall CNT and Nanocomposites on the Base of Polymers. Carbon Nanomaterials in Clean Energy Hydrogen Systems. 2008. P. 327.

3. Sementsov Yu.I, Prikhod'ko G.P., Melezhek A.V. Aleksyeyeva T.A., Kartel M.T. Physicochemical properties and biocompatibility of polymer/carbon nanotubes composites. Nanomaterials and Supramolecular Structures. 2009. P. 347. https://doi.org/10.1007/978-90-481-2309-4_27

4. Patent 69292 A UA, C01B 31/00. Yanchenko V.V., Sementsov Yu., Melezhyk A.V. Method of carbon nanotubes production. 2004.

5. Melezhek O.V., Sementsov Yu.I., Yanchenko V.V. Synthesis of fine carbon nanotubes on copricipitated metal oxide catalysts. Russ. J. Appl. Chem. 2005. 78(6): 917. https://doi.org/10.1007/s11167-005-0420-y

6. Sementsov Yu.I., Melezhek O.V., Prikhod'ko G.P. Synthesis, structure, physicochemical properties of nanocarbon materials. In: Physical chemistry on nanomaterials and supramolecular structures. V. 2. (Kyiv: Naukova dumka, 2007).

7. Utracki L.A., Bakerdjiane Z., Kamal M.R. A method for the measurement of the true die swell of polymer melts. J. Appl. Polymer Sci. 1975. 19(2): 481. https://doi.org/10.1002/app.1975.070190213

8. Sokolov Y.A., Shubanov S.M., Kandyrin L.B., Kalugin E.V. Polymer nanocomposites. Structure. Properties. Review. Plasticheskiye massy. 2009. 3: 18.

9. Sumer M., Muglali M., Bodrumlu E. Guvenc T. Reactions of connective tissue to amalgam, intermediate restorative material, mineral trioxide aggregate, and mineral trioxide aggregate mixed with chlorhexidine. J. Endod. 2006. 32(11): 1094. https://doi.org/10.1016/j.joen.2006.05.012




DOI: https://doi.org/10.15407/hftp04.02.191

Copyright (©) 2013 Yu. I. Sementsov, G. P. Prikhod’ko, N. T. Kartel, T. A. Aleksyeyeva, M. V. Tsebrenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.