Chemistry, Physics and Technology of Surface, 2014, 5 (2), 119-128.

Electronic Structure of Metals-Doped Anatase Calculated Using Periodic Boundary Conditions and Cluster Approach



V. M. Gun'ko

Abstract


Changes in the electronic structure of anatase doped with 3d and 4d metals, Sr, Ca and B/N were analyzed using a cluster approach (PM7, DFT, ab initio methods) and periodic boundary conditions (DFTB+, PM7 using super-cells with 18, 48, 64 and 108 TiO2 units). Most appropriate results were obtained using periodic boundary conditions and DFT methods. Embedding of impurities into the anatase structure leads to main changes in the electronic structure around the top of the valence band if the dopant has an excess of valence electrons with respect to Ti atoms or at the bottom of the conduction zone if the dopant has a lower number of valence electrons than Ti has.

Keywords


cluster quantum chemical approach; electronic structure; anatase doped with metals

Full Text:

PDF (Русский)

References


1. Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results // Chem. Rev. – 1995. – V. 95. – P. 735–758.

2. Fujishima A., Hashimoto K., Watanabe T. TiO2 Photocatalysis Fundaments and Applications, University of Tokyo, BKC, Inc., Tokyo, 1999. – 176 р.

3. Emori M., Sugita M., Ozawa K., Sakama H. Electronic structure of epitaxial anatase TiO2 films: Angle-resolved photoelectron spectro-scopy study // Phys. Rev. B. – 2012. – V. 85, 035129. – P. 1–6.

4. Lei Y., Liu H., Xiao W. First principles study of the size effect of TiOanatase nanoparticles in dye-sensitized solar cell // Model. Simul. Mater. Sci. Eng. - 2010. – V. 18, 025004. – P. 1–9.

5. Šćepanović M.J., Grujić-Brojčin M., Dohčević-Mitrović Z.D., Popović Z.V. Characterization of anatase TiO2 nanopowder by variable-temperature Raman spectroscopy // Sci. Sintering. – 2009. – V. 41. – P. 67–73.

6. Lazzeri M., Vittadini A., Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces // Phys. Rev. B. – 2001. – V. 63, 155409. – P. 1–9.

7. Yin W.-J., Chen S., Yang J.-H. et al. Effective band gap narrowing of anatase TiO2 by strain along a soft crystal direction // Appl. Phys. Lett. – 2010. – V. 96, 221901. – P. 1–3.

8. Minaev B.F., Baryshnikov G.V., Minaeva V.A. Electronic structure and spectral properties of the triarylamine-dithienosilole dyes for efficient organic solar cells // Dyes Pigments. – 2011. – V. 92, N 1. – Р. 531–536.

9. Liu G., Yin L.-C., Wang J. et al. A red anatase TiO2 photocatalyst for solar energy conversion // Energy Environ. Sci. – 2012. – V. 5. – P. 9603–9610.

10. Zimmermann R., Steiner P., Claessen R. et al. Electronic structure systematics of 3d transition metal oxides // J. Electron Spectros. Related Phenom. – 1998. – V. 96. – P. 179–186.

11. Patrick C.E., Giustino F. GW quasiparticle bandgaps of anatase TiO2 starting from DFT+U // J. Phys.: Condens. Matter. – 2012. – V. 24, 202201. – P. 1–5.

12. Gong S., Liu B.-G. Electronic structures and optical properties of TiO2: Improved density-functional-theory investigation // Chin. Phys. B. – 2012. – V. 21, 057104. – P. 1–7.

13. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations // J. Phys. Chem. Solid. – 2002. – V. 63. – P. 1909–1920.

14. Wang Y., Doren D.J. Electronic structures of    V-doped anatase TiO2 // Solid State Communications. – 2005. – V.136. – P. 142–146.

15. Alexopoulos K., Hejduk P., Witko M. et al. Theoretical study of the effect of (001) TiO2 anatase support on V2O5 // J. Phys. Chem. C. – 2010. – V. 114. – P. 3115–3130.

16. Hanaor D.A.H., Assadi M.H.N., Li S. et al. Ab initio study of phase stability in doped TiO2 // Comput. Mech. – 2012. – V. 50. – P. 185–194.

17. Geng W.T., Kim K.S. Interplay of local structure and magnetism in Co-doped TiO2 anatase // Solid State Comm. – 2004. – V. 129. – P. 741–746.

18. Lee C., Aikens C.M. Effects of Mn-doping on (TiO2)n (n = 2–5) complexes // Comput. Theor. Chem. – 2013. – V. 1013. – P. 32–45.

19. Sun S., Ding J., Bao J. et al. Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mecha-nism // Appl. Surf. Sci. – 2012. – V. 258. –    P. 5031–5037.

20. Yu Q., Jin L., Zhou C. Ab initio study of electronic structures and absorption properties of pure and Fe3+ doped anataseTiO2 // Solar Energy Mater. Solar Cell. – 2011. – V. 95. – P. 2322–2326.

21. Niu M., Cheng D., Cao D. Enhanced photo-electrochemical performance of anatase TiO2 by metal-assisted S-O coupling for water splitting // Int. J. Hydrogen Energ. – 2013. – V. 38. – P. 1251–1257.

22. Shirley R., Inderwildi O.R., Kraft M. Electronic and optical properties of aluminium-doped anatase and rutile TiO2 from ab initio calculations // University of Cambridge, Cambridge, UK. – 2009. – Preprint N 71. – P. 1–22.

23. Song K., Han X., Shao G. Electronic properties of rutile TiO2 doped with 4d transition metals: First-principles study // J. Alloys Compd. – 2013. – V. 551. – P. 118–124.

24. Bian L., Song M., Zhou T. et al. Band gap calculation and photo catalytic activity of rare earths doped rutile TiO2 // J. Rare Earths. – 2009. –V. 27. – P. 461–468.

25. Lippens P.E., Chadwick A.V., Weibel A. et al. Structure and chemical bonding in Zr-doped anatase TiOnanocrystals // J. Phys. Chem. C. – 2008. – V. 112. – P. 43–47.

26. Gao P., Wu J., Liu Q.-J., Zhou W.-F. First principles study on anatase TiO2 codoped with nitrogen and praseodymium // Chin. Phys. B. – 2010. – V. 19, 087103. – P. 1–9.

27. Li L., Yang W., Ding Y., Zhu X. First principles study of the electronic structure of hafnium-doped anatase TiO2// Journal of Semicon-ductors. – 2012. – V. 33, 012002. – P. 1–4.

28. Hou X.-G., Liu A.-D., Huang M.-D. et al. First principles band calculations on electronic structures of Ag-doped rutile and anatase TiO2 // Chin. Phys. Lett. – 2009. – V. 26, 077106. –      P. 1–4.

29. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Wallingford CT: Gaussian, Inc., 2013.

30. Godbout N., Salahub D.R., Andzelm J., Wimmer E. Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation // Can. J. Chem. – 1992. – V. 70. – P. 560–571.

31. Sosa C., Andzelm J., Elkin B.C. et al. A local density functional study of the structure and vibrational frequencies of molecular transition-metal compounds // J. Phys. Chem. – 1992. – V. 96. – P. 6630–6636.

32. Stewart J.J.P. MOPAC 2012, Colorado Springs, CO: Stewart Computational Chemistry, USA, http://openmopac.net/, 2013.

33. Maia J.D.C., Carvalho G.A.U., Mangueira C.P.Jr. et al. GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations // J. Chem. Theory Comput. – 2012. – V. 8. – P. 3072–3081.

34. Aradi B., Hourahine B., Frauenheim Th. DFTB+, a sparse matrix-based implementation of the DFTB method // J. Phys. Chem. A. – 2007. – V. 111, N 26. – P. 5678–5684.




Copyright (©) 2014 V. M. Gun'ko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.