Chemistry, Physics and Technology of Surface, 2014, 5 (2), 158-163.

Obtaining of Graphene-Like Particles by Reduction of Graphite Oxide



O. S. Papaianina, M. V. Savoskin, A. N. Vdovichenko, M. Yu. Rodygin, M. A. Kompanets, I. O. Opeida

Abstract


Comparative effectiveness of graphite oxide reduction agents has been studied. It has been founded that 9,10‑dihydroanthracene is the most effective reducing agent among known reductants. Its usage allowed us to obtain graphene-like particles with O/C atomic ratio = 0.03.


Keywords


graphite oxide; reduction; 9,10‑dihydroanthracene; graphene-like particles

Full Text:

PDF (Русский)

References


1. Niyogu S., Bekyarova E., Itkis M.E. et al. Solution properties of graphite and graphene // J. Am. Chem. Soc. – 2006. – V. 128, N 24. – P. 7720–7721.

2. Titelman G.I., Gelman V., Bron S. et al. Characteristic and microstructure of aqueous colloidal dispersions of graphite oxide // Carbon. – 2005. – V. 43, N 3. – P. 641–649.

3. Min K., Han T.H., Kom J. et al. A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films // J. Colloid. Interface Sci. – 2012. – V. 383, N 1. – P. 36–42.

4. Eda G., Fanchini G., Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material // Nat. Nanotech. – 2008. – V. 3, N 5. – P. 270–274.

5. Wang X.R., Ouyang Y.J., Li X.L. et al. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors // Phys. Rev. Lett. – 2008. – V. 100, N 20. – P. 206803.

6. Fernández-Merino M.J., Guardia L., Paredes J.I. et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions // J. Phys. Chem. C. – 2010. – V. 114. – P. 6426–6432.

7. Verdejo R., Barroso-Bujans F., Rodriguez-Perez M.A. et al. Functionalized graphene sheet filled silicone foam nanocomposites // J. Mater. Chem. – 2008. – V. 18, N 19. – P. 2221–2226.

8. Папаянина Е.С., Савоськин М.В., Вдовиченко А.Н. и др. Оксид графита – стадии формирования и новый взгляд на структуру // Теор. эксперим. химия. – 2013. – Т. 49, № 2. – С. 81–87.

9. Wang G., Yang J., Park J. et al. Facile synthesis and characterization of graphene nanosheets // J. Phys. Chem. C. – 2008. – V. 112, N 22. – P. 8192–8195.

10. Stankovich S., Piner R.D., Chen X. et al. Stable aqueous dispersions of graphitic nano-plateletsviathe reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) // J. Mater. Chem. – 2006. – V. 16, N 2. – P. 155–158.

11. Gao W., Alemany L.B., Ci L., Ajayan P.M. New insights into the structure and reduction of graphite oxide // Nat. Chem. – 2009. – V. 1, N 5. – P. 403–408.

12. Linares-Solan A., Mahajan O.P., Weldon D., Walker P.L. Coal liquefaction yields in tetralin – their prediction from heat measurements of coal hydrogenation in H2 by DSC // Fuel. – 1987. – V. 66, N 5. – P. 715–717.

13. Hendrik G. J. Potgieter. Kinetics of conversion of tetralin during hydrogenation of coal // Fuel. – 1973. – V. 52, N 2. – P. 134–137.

14. Fan X., Peng W., Li Ya et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation // Adv. Mater. – 2008. – V. 20, N 23. – P. 4490–4493.

15. Syeden-Penne J. Reduction by the alumino- and borohydrides in organic synthesis. – Canada: Wiley-VCH, 1997. – 224 p.

16. Kis A., Csányi G., Salvetat J.P. et al. Reinforcement of single-walled carbon nanotube bundles by intertube bridging // Nat. Mater. – 2004. – V.3, N 3. – P 153–157.




Copyright (©) 2014 O. S. Papaianina, M. V. Savoskin, A. N. Vdovichenko, M. Yu. Rodygin, M. A. Kompanets, I. O. Opeida

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.