Hydrothermal Modification of Vanadium-Molybdenym Oxide Catalysts for Oxidative Dehydrogenation of Propane
Abstract
The influence of conditions for V2O5-MoO3 catalysts hydrothermal treatment (HTT) by conventional and microwave heating on their physico-chemical and catalytic properties has been studied. The observed transformations have been investigated by XRD, FTIR, nitrogen adsorption, measurements of electroconductivity. The activity V-Mo-O samples in reaction of oxidative dehydrogenation of propane increases in row HTT-300°С > HTT-350°С > HTT-250°С according to changes of their conductivity G·10–5: 11 > 6 > 1 S/m.
Keywords
References
1. Шиманская М.В., Лейтис Л.Я., Сколмейстере Р.А. и др. Ванадиевые катализаторы окисления гетероциклических соединений. – Рига: Зинатне, 1990. – 255 с.
2. Bielanski A., Najbar M. V2O5-MoO3 catalysts for benzene oxidation // Appl. Catal. A. – 1997. – V. 1. – P. 223 – 261.
3. Плясова Л.М., Зенковец Г.А., Оленькова И.П., Тарасова Д.В. Формирование фазового состава окисной ванадий-молибденовой системы при термическом разложении парамолибдата и метаванадата аммония // Изв. СО АН СССР. Сер. хим. наук. – 1980. – № 9, вып. 4. – С. 97–104.
4. Волков В.Л. Фазы внедрения на основе оксидов ванадия. – Свердловск: УНЦ АН СССР, 1987. – 180 с.
5. Гольдштейн Н.Д., Мищенко Ю.А., Гельбштейн А.И. Энергия связи поверхностного кислорода в системе V2O5 – MoO3 разных составов // Журн. физ. химии. – 1972. – Т. 46, № 1. – С. 106–110.
6. Волков В.Л. Исследование хемосорбции кислорода в системе V2O5 – MoO3 // Журн. физ. химии. – 1985. – Т. 59, № 2. – С. 428–432.
7. Parmaliana A., Sokolovskii V., Miceli D.and Giordano N. Highly effective vanadia-silica catalyst for propane oxidative dehydro-genation // Appl. Catal. A. – 1996. – V. 135. – P. L1–L5.
8. Klisinska A., Loridant S., Grzybowska B. et al. Effect of additives on properties of V2O5/SiO2 and V2O5/MgO catalysts. II. Structure and physicochemical properties of the catalysts and their correlations with oxidative dehydrogenation of propane and ethane // Appl. Catal A: General. – 2006. – V. 309. – P. 17–27.
9. Dai H., Bell A.T., Iglesia E. Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane // J. Catal. – 2004. – V. 221. – P. 491–499.
10. Taylor S.H., Pollard A.J.J. Silica and boron nitride supported molybdenum and vanadium oxide catalysts for propane oxidation // Catal.Today. – 2003. – V. 81. – P. 179–188.
11. Tichy J. Oxidation of acrolein to acrylic acid over vanadium-molybdenum oxide catalysts // Appl. Catal A: General. – 1997. – V. 157. – P. 363–385.
12. Pless J.D., Bardin B.B., Kim H-S. et al. Catalytic oxidative dehydrogenation of propane over Mg-V/Mo oxides // J. Catal. – 2004. – V. 223. – P. 419–431.
13. Botella P., López-Nieto J.M., Solsona B. Preparation, characterization and catalytic behavior of a new TeVMoO crystalline phase // Catal. Lett. – 2002. – V. 78. – P. 383–387.
14. Lin M.M. Selective oxidation of propane to acrylic acid with molecular oxygen // Appl. Catal. A: General. – 2001. – V. 207. – P. 1–16.
15. Андрушкевич Т.В. Механизм каталитического действия оксидных систем в реакциях окисления альдегидов в карбоновые кислоты // Кинетика и катализ. – 1997. – Т. 38, № 2. – С. 289–300.
16. Ueda W., Oshihara K. Selective oxidation of light alkanes over hydrothermally synthesized Mo-V-M-O oxide catalysts // Appl. Catal. A. – 2000. – V. 200. – P. 135–143.
17. Skwarek E., Khalameida S., Janusz W. et al. Influence of mechanochemical activation on structure and some properties of mixed vanadium-molybdenum oxides // J. Therm. Anal. Calorim. – 2011. – V. 106. – P. 881–894.
18. Khalameida S., Sydorchuk V., Leboda R. et al. Physical-chemical transformations in the system V2O5-(NH4)2Mo2O7 under hydro-thermal conditions // Central Eur. J. Chem. – 2014. – V. 12. – P. 140–152.
19. Vitry D., Morikawa Y., Dubois J.L., Ueda W. Mo-V-Te-(Nb)-O mixed metal oxides prepared by hydrothermal synthesis for catalytic selective oxidations of propane and propene to acrylic acid // Appl.Catal A: Genera l. – 2003. – V. 251. – P. 411–424.
20. López-Nieto J.M., Botella P., Solsona B., Oliver J.M. The selective oxidation of propane on Mo-V-Te-Nb-O catalysts: The influence of Te-precursor // Catal.Today. – 2003. – V. 81. – P. 87–94.
21. Duc F., Gonthier S., Brunelli M., Trombe J.C. Hydrothermal synthesis and structure determi-nation of the new vanadium molybdenum mixed oxide V1.1Mo0.9O5 from synchrotron X-ray powder diffraction data // J. Solid State Chem. – 2006. – V. 179. – P. 3591–3598.
22. Agterdenbos J., Eggink A.J.R. A rapid determination of the deviation from stoichiometry in vanadium pentoxide // Z. anorg. allg Chem. – 1972. – V. 388. – P. 177–180.
23. Pieters T.W.J., Kuilenburg J.M. Relationship between V4+ and Mo6+ contents in V2O5 doped with MoO3 // Z. anorg. allg. Chem. – 1973. – V. 399. – P. 170–174.
24. Mougin O., Dubois J.-L., Mathieu F., Rousset A. Metastable hexahonal vanadium molybdate study // J. Solid State Chem. – 2000. – V. 152. – P. 353–360.
25. Волков В.Л., Захарова Г.С., Бондаренкo В.М. Ксерогели простых и сложных поливанадатов. – Екатеринбург: Уральское отд. Ин-та химии твердого тела, 2001. – 195 с.
26. Фенелонов В.Б. Введение в физическую химию формирования супрамолекулярной структуры адсорбентов и катализаторов. – Новосибирск: СО РАН, 2004. – 440 с.
27. Юхневич Г.В. Инфракрасная спектроскопия воды. – Москва, 1973. – 207 с.
28. Накомото К. Инфракрасные спектры неорганических соединений. – Москва: Мир, 1966. – 411 с.
29. Allersma T., Hakim R., Kennedy T.N., Mackenzie J.D. Structure and physical properties of solid and liquid vanadium pentoxide // J. Chem. Phys. – 1967. – V. 46. – P. 154–160.
30. Нейман А.Я., Барсанов С.Ю. Новые данные о механизме массопереноса при твердофазных реакциях. III. Взаимодействие оксидов с низкой поверхностной энергией (реакция между V2O5 и МоО3) // Кинетика и катализ. – 1999. – T. 40, № 1. – С. 50–57.
31. Burzo E., Stanescu L., Ardelean I., Chipara M. Soluţii solide pe bază de V2O5. II. Proprietăţi fizice // Revista Chim. – 1980. – V. 31. – P. 351–357.
32. Shaporev A.S., Ivanov V.K., Baranchikov A.E., Tret’yakov Yu.D. Microwave-assisted hydro-thermal synthesis and photocatalytic activity of ZnO // Inorg. Mater. – 2007. – V. 43. – P. 35–39.
33. Manoharan S. S., Prasanna S.S.J., Rao M.L., Sahu R.K. Microwave-assisted synthesis of fine particle oxides employing wet redox mixtures // J. Am. Ceram. Soc. – 2002. – V. 85. – P. 2469–2471.
34. Vislovskiy V.P., Suleimanov T.E., Sinev M.Yu. et al. On the role of heterogeneous and homogeneous processes in oxidative dehydrogenation of C3-C4 alkanes // Catal Today. – 2000. – V. 61. – P. 287–293.
35. Solsona B., Blasco T., Lopez Nieto J.M. et al. Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in oxidative dehydrogenation of alkanes // J. Catal. – 2001. – V. 203. – P. 443–452.
36. Monaci R., Rombi E., Soinas V. et al. Oxida-tive dehydrogenation of propane over V2O5/TiO2/SiO2 catalysts obtained by grafting titanium and vanadium alkoxides on silica // Appl. Catal. A: General. – 2001. – V. 214. – P. 203–212.
37. Karakoulia S.A., Triantafyllidis K.S., Lemoni-dou A.A. Preparation and characterization of vanadia catalysts supported on non-porous, microporous and mesoporous silicates for oxidative dehydrogenation of propane (ODP) // Micropor. Mesopor. Mater. – 2008. – V. 110. – P. 157–166.
Copyright (©) 2017 S. V. Khalameida, N. D. Konovalova, V. O. Zazhigalov, V. I. Zarko
This work is licensed under a Creative Commons Attribution 4.0 International License.