Chemistry, Physics and Technology of Surface, 2014, 5 (3), 291-302.

Functionalized mesoporous silicas as carriers for release of biologically active compounds



N. V. Roik

Abstract


In the present work, the influence of structural characteristics and chemical nature of surface layer of silica materials with hexagonally arranged structure of mesopores on the processes of biologically active compounds capsulation and their subsequent delivery has been considered. A comparative analysis of effectiveness of organosilica systems for sustained and pH‑controlled release of molecules of biologically active substances from pores of carrier into the surrounding medium has been realized.

Keywords


МСМ‑41; biologically active substance; release; nanovalve

Full Text:

PDF (Русский)

References


1. Kresge C.T., Leonowicz M.E., Roth W.J. et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.  Nature. − 1992. − V. 359. − P. 710−712.

2. Beck J.S., Vartuli J.C., Roth W.J. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates.  J. Am. Chem. Soc. − 1992. − V. 114. − P. 10834–10843.

3. Slowing I.I., Vivero‑Escoto J.L., Wu C.‑W., Lin S.‑Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers.  Adv. Drug Delivery Rev. − 2008. − V. 60. − P. 1278−1288.

4. Kisler J.M., Dahler A., Stevens G.W., O’Connor A.J. Separation of biological molecules using mesoporous molecular sieves.  Micropor. Mesopor. Mater. − 2001. − V. 44−45. − P. 769−774.

5. Horcajada P., Ramila A., Perez-Pariente J., Vallet-Regi M. Influence of pore size of MCM-41 matrices on drug delivery rate.  Micropor. Mesopor. Mat. − 2004. − V. 68. − P. 105−109.

6. Marzouqa D.M., Zughul M.B., Taha M.O., Hodali H.A. Effect of particle morphology and pore size on the release kinetics of ephedrine from mesoporous MCM‑41 materials.  J. Porous Mater. − 2012. − V. 19. − P. 825−833.

7. Gao L., Sun J., Zhang L. et al. Influence of different structured channels of mesoporous silicate on the controlled ibuprofen delivery.  Mater. Chem. Phys. − 2012. − V. 135. − P. 786−797.

8. Qu F., Zhu G., Lin H. et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials.  J. Solid State Chem. − 2006. − V. 179. − P. 2027–2035.

9. Shen S.-C., Ng W.K., Chia L., Hu J., Tan R.B.H. Physical state and dissolution of ibuprofen formulated by co-spray drying with mesoporous silica: Effect of pore and particle size.  Int. J. Pharm. − 2011. − V. 410. − P. 188–195.

10. Tang Q., Xu Y., Wu D. et al. Studies on a new carrier of trimethylsilyl-modified mesoporous material for controlled drug delivery.  J. Control. Release. − 2006. − V. 114. − P. 41–46.

11. Aznar E., Sancenon F., Marcos M.D. et al. Delivery modulation in silica mesoporous supports via alkyl chain pore outlet decoration.  Langmuir. − 2012. − V. 28. − P. 2986−2996.

12. Qu F., Zhu G., Huang S., Li S., Qiu S. Effective controlled release of captopril by silylation of mesoporous MCM-41.  Chem. Phys. Chem. − 2006. − V. 7. − P. 400−406.

13. Doadrio J.C., Sousa E.M.B., Izquierdo-Barba I. et al. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern.  J. Mater. Chem. − 2006. − V. 16. − P. 462−466.

14. Manzano M., Aina V., Arean C.O. et al. Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization.  Chem. Eng. J. − 2008. − V. 137. − P. 30–37.

15. Szegedi A., Popova M., Goshev I., Mihaly J. Effect of amine functionalization of spherical MCM-41 and SBA-15 on controlled drug release.  J. Solid State Chem. − 2011. − V. 184. −P. 1201–1207.

16. Song S.-W., Hidajat K., Kawi S. Functi-onalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions.  Langmuir. − 2005. − V. 21. − P. 9568−9575.

17. Munoz B., Ramila A., Perez-Pariente J. et al. MCM-41 organic modification as drug delivery rate regulator.  Chem. Mater. − 2003. − V. 15. − P. 500−503.

18. Horcajada P., Ramila A., Ferey G., Vallet-Regi M. Influence of superficial organic modification of MCM-41 matrices on drug delivery rate.  Solid State Sci. − 2006. − V. 8. − P. 1243–1249.

19. Nieto A., Balas F., Colilla M. et al. Functionalization degree of SBA-15 as key factor to modulate sodium alendronate dosage.  Micropor. Mesopor. Mater. − 2008. − V. 116. − P. 4–13.

20. Hunt C.A., MacGregor R.D., Siegel R.A. Engineering targeted in vivo drug delivery. I. The physiological and physicochemical principles governing opportunities and limitations.  Pharm. Res. − 1986. − V. 3. − P. 333−344.

21. Lee C.‑H., Lo L.‑W., Mou C.‑Y., Yang C.‑S. Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug.  Adv. Funct. Mater. − 2008. − V. 18. − P. 3283–3292.

22. Tzankov B., Yoncheva K., Popova M. et al. Indometacin loading and in vitro release properties from novel carbopol coated spherical mesoporous silica nanoparticles.  Micropor. Mesopor. Mater. − 2013. − V. 171. − P. 131−138.

23. Zheng H., Che S. Amino/quaternary ammonium groups bifunctionalized large pore mesoporous silica for pH-responsive large drug delivery.  RSC Adv. − 2012. − V. 2. − P. 4421−4429.

24. Kim M.S., Jeon J.B., Chang J.Y. Selectively functionalized mesoporous silica particles with PEGylated outer surface and the doxorubicin‑grafted inner surface: Improvement of loading content and solubility.  Micropor. Mesopor. Mater. − 2013. − V. 172. − P. 118−124.

25. Gan Q., Lu X., Dong W. et al. Endosomal pH-activatable magnetic nanoparticle-capped mesoporous silica for intracellular controlled release.  J. Mater. Chem. − 2012. − V. 22. − P. 15960−15968.

26. Gao Y., Yang C., Liu X. et al. A multi-functional nanocarrier based on nanogated mesoporous silica for enhanced tumor-specific uptake and intracellular delivery.  Macromol. Biosci. − 2012. − V. 12. − P. 251−259.

27. Roik N.V., Belyakova L.A. Chemical design of pH-sensitive nanovalves on outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid.  J. Solid State Chem. − 2014. − V. 215. − P. 284−291.

28. Roik N.V., Belyakova L.A., Dziazko M.O. Mesoporous silica equipped with pH-sensitive nanovalves for controlled liberation of para-aminobenzoic acid.  Proceedings of E-MRS 2014 Spring Meeting. − France, Lille. − 26−30 May 2013. − P. Q.PI 1

29. Casasus R., Marcos M.D., Martinez‑Manez R. et al. Toward the development of ionically controlled nanoscopic molecular gates.  J. Am. Chem. Soc. − 2004. − V. 126. − P. 8612−8613.

30. Casasus R., Climent E., Marcos M.D. et al. Dual aperture control on pH‑ and anion‑driven supramolecular nanoscopic hybrid gate‑like ensembles.  J. Am. Chem. Soc. − 2008. − V. 130. − P. 1903−1917.

31. Bernardos A., Aznar E., Coll C. et al. Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings.  J. Controll. Rel. − 2008. − V. 131. − P. 181–189.

32. Yang Y.‑W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles.  Med. Chem. Commun. − 2011. − V. 2. − P. 1033−1049.

33. Ambrogio M.W., Thomas C.R., Zhao Y.‑L. et al. Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine.  Accounts of Chem. Res. − 2011. − V. 44, N 10. − P. 903−913.

34. Li Z., Barnes J.C., Bosoy A. et al. Mesoporous silica nanoparticles in biomedical application.  Chem. Soc. Rev. − 2012. − V. 41. − P. 2590−2605.

35. Nguyen T.D., Leung K.С.‑F., Liong M. et al. Construction of a pH‑driven supramolecular nanovalve.  Org. Lett. − 2006. − V. 8, N 15. − P. 3363−3366.

36. Klichko Y., Khashab N.M., Yang Y.‑W. et al. Improving pore exposure in mesoporous silica films for mechanized control of the pores.  Micropor. Mesopor. Mater. − 2010. − V. 132. − P. 435−441.

37. Angelos S., Yang Y.‑W., Patel K. et al. pH‑responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes.  Angew. Chem. Int. Ed. − 2008. − V. 47. − P. 2222−2226.

38. Meng H., Xue M., Xia T. et al. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH‑sensitive nanovalves.  J. Am. Chem. Soc. − 2010. − V. 132. − P. 12690−12697.

39. Park C., Oh K., Lee S.C., Kim C. Controlled release of guest molecules from mesoporous silica particles based on a pH‑responsive polypseudorotaxane motif.  Angew. Chem. Int. Ed. − 2007. − V. 46. − P. 1455−1457.




Copyright (©) 2014 N. V. Roik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.