Chemistry, Physics and Technology of Surface, 2014, 5 (3), 317-324.

Catalytic activity of cerium-containing materials in reaction of hydrogen peroxide decomposition



T. Yu. Dmytrenko, K. S. Kulyk, K. V. Voitko, O. N. Bakalinska, N. V. Borysenko, M. T. Kartel

Abstract


We have studied the effect of crystallinity (micro- and nano-) and size of cerium oxide nanoparticles pristine and deposited on silica A-300 on their catalytic properties in the model reaction of hydrogen peroxide decomposition activity in comparision with enzyme catalase. Affinity constants were calculated by the kinetic data of hydrogen peroxide decomposition. It was found that with decreased degree of cerium oxide dispersion its catalytic properties calculated on the 100 % cerium oxide content was dropped. It is shown that for samples and silica supported catalysts 2 %CeO2/A-300, 5 %CeO2/A-300 activity has an extreme character with a maximum at pH 10.0–10.5. Activity of the enzyme catalase and sample of CeO2 m.c. is relatively low and is practically independent from pH.

Keywords


cerium dioxide nanoparticles; CeO2/SiO2; hydrogen peroxide decomposition; catalase; affinity constants

Full Text:

PDF (Українська)

References


1. Hilaire S., Wang X., Luo T. et al. A comparative study of water-gas-shift reaction over ceria-supported metallic catalysts.  Appl. Catal. A: General. – 2004. – V. 258. – P. 271–276.

2. Al-Yassir N., Van Mao R.Le. Physico-chemical properties of mixed molybdenum and cerium oxides supported on silica-alumina and their use as catalysts in the thermal-catalytic cracking (TCC) of n-hexane.  Appl. Catal. A: General. – 2006. – V. 305. – P. 130–139.

3. De Graaf E.A., Andreini A., Hensen E.J.M. et al. Selective hydrogen oxidation in a mixture with ethane-ethene using cerium zirconium oxide.  Appl. Catal. A: General. – 2004. – V. 262. – P. 201–206.

4. Dai Q., Wang X., Lu G. Low-temperature catalytic destruction of chlorinated VOCs over cerium oxide.  Catal. Commun. – 2007. – V. 8. – P. 1645–1649.

5. Garcia T., Solsona B., Taylor S.H. Nano-crystalline ceria catalysts for the abatement of polycyclic aromatic hydrocarbons.  Catal. Lett. – 2005. – V. 105. – P. 183–189.

6. Sabitha G., Reddy K.B., Yadav J.S. et al. Ceria/vinylpyridine polymer nanocomposite: an ecofriendly catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones.  Tetrahed-ron Lett. – 2005. – V. 46. – P. 8221–8224.

7. Reddy B.M., Lakshmanan P., Bharali P. et al. Dehydration of 4-methylpentan-2-ol over CexZr1−xO2/SiO2 nano-composite catalyst.  J. Mol. Catal. A: Chem. – 2006. – V. 258. – P. 355–360.

8. Sato S., Takahashi R., Kobune M. et al. Dehydration of 1,4-butanediol over rare earth oxides.  Appl. Catal. A: General. – 2009. – V. 356. – P. 64–71.

9. Nagashima О., Sato S., Takahashi R. et al. Ketonization of carboxylic acids over CeO2-based composite oxides.  J. Mol. Catal. A: Chem. – 2005. – V. 227. – P. 231–239.

10. Su E.C., Montreuil C.N., Rothschild W.G. Oxygen storage capacity of monolith three-way catalysts.  Appl. Catal. – 1985. – V. 17. – P. 75–86.

11. Su E.C., Rothschild W.G. Dynamic behavior of three-way catalysts.  J. Catal. – 1986. – V. 99. – P. 506–510.

12. Engler B., Koberstein E., Schubert P. Automotive exhaust gas catalysts: Surface structure and activity.  Appl. Catal. – 1989. – V. 48 – P. 71–92.

13. Kacimi S., Barbier J.Jr., Taha R. et al. Oxygen storage capacity of promoted Rh/CeO2 catalysts. Exceptional behavior of RhCu/CeO2.  Catal. Lett. – 1993. – V. 22. – P. 343–350.

14. Duprez D., Descorme C., Birchem T. et al. Oxygen storage and mobility on model three-way catalysts.  Top. Catal. – 2001. – V. 16–17. – P. 49–56.

15. Trovarelli A., Dolcetti G., de Leitenburg C. et al. Rh-CeO2 interaction induced by high-temperature reduction. Characterization and catalytic behaviour in transient and continuous conditions.  J. Chem. Soc., Faraday Trans. – 1992. – V. 88. – P. 1311–1319.

16. Trovarelli A. Catalytic properties of ceria and CeO2-containing materials.  Cat. Rev. - Sci. Eng. – 1996. – V. 38. – P. 439–520.

17. Ozawa M., Kimura M., Isogai A. Application of Ce-Zr oxide solid solution to oxygen storage promoters in automotive catalysts.  J. Alloys Compd. – 1993. – V. 193. – P. 73–75.

18. Fornasiero P., Dimonte R., Rao G.R. et al. Rh-loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties.  J. Catal. – 1995. – V. 151. – P. 168–177.

19. Boaro M., de Leitenburg С., Dolcetti G. et al. The dynamics of oxygen storage in ceria-zirconia model catalysts measured by CO oxidation under stationary and cycling feedstream compositions.  J. Catal. – 2000. – V. 193. – P. 338–347.

20. Binet С., Daturi M., Lavalley J-C. IR study of polycrystalline ceria properties in oxidised and reduced states.  Catal. Today. – 1999. – V. 50. – P. 207–225.

21. Karakoti A.S., Monteiro-Riviere N.A, Aggarwal R. et al. Nanoceria as antioxidant: synthesis and biomedical applications.  JOM. – 2008. – V. 60. – P. 33–37.

22. Babu S., Velez A., Wozniak K. et al. Electron paramagnetic study on radical scavenging properties of ceria nanoparticles.  Chemical Physics Letters. – 2007. – V. 442. – P. 405–408.

23. Heckert E.G., Karakoti A.S., Seal S. et al. The role of cerium redox state in the SOD mimetic activity of nanoceria.  Biomaterials. – 2008. – V. 29. – P. 2705–2709.

24. Иванов В.К., Жолобак Н.М., Щербаков А.Б. и др. Наноматериалы на основе диоксида церия: свойства и перспективы использования в биологии и медицине.  Биотехнология. – 2011. – Т. 4, № 1. – С. 9–26.

25. Шапорев А.С., Ванецев А.С., Кирюхин Д.П. и др. Синтез полимерных композитов на основе золей ZnO, CeO2 и Gd2O3.  Конденсированные среды и межфазные границы. – 2011. – Т. 13, № 3. – С. 374–380.

26. Иванов В.К., Щербаков А.Б., Рябоконь И.Г. и др. Инактивирование нитроксильного радикала наночастицами диоксида церия.  Докл. РАН. – 2010. – Т. 430, № 5. – С. 639–642.

27. Patil S., Reshetnikov S., Haldar M.K. et al. Surface-derivatized nanoceria with human carbonic anhydrase ii inhibitors and fluorophores: a potential drug delivery device.  J. Phys. Chem. – 2007. – V. 111. – P. 8437–8442.

28. Буянова Е.К., Карнаухов А.П. Определение удельной поверхности твердых тел хроматографическим методом тепловой десорбции аргона. – Новосибирск: Наука, 1965.– 60 с.

29. Горелик С.С., Скаков Ю.А. Рентгенографический и электронно-оптический анализ. – Москва: МИСИС, 2002. – 360 c.

30. Ляликов Ю.С. Физико-химические методы анализа. – Москва: Химия, 1973. – 536 с.

31. Бабко К.А., Пятницкий И.В. Количественный анализ. – Москва: Высш. школа, 1968. – 496 с.

32. Практикум по биохимии: под ред. Мешкова Н.П. и Северина С.Е. – М.: Изд-во МГУ, 1979. – 429 с.

33. Vansant E.F., Van Der Voort P., Vrancken K.C. Characterization and chemical modification of the silica surface.  Studies in Surface Science and Catalysis. – V. 93. – Elsevier: Amsterdam – Tokyo, 1995.

34. Борисенко Н.В., Мутовкин П.А., Плюто Ю.В. Устойчивость привитых хром- и титанхлоридных групп в газофазном синтезе смешанных хромтитансодержащих кремнеземов.  Кинетика и катализ. – 1997. – Т. 38, № 1. – С. 119–121.

35. Кулик К.С. Синтез та властивості кремнеземів, модифікованих сполуками церію. Автореф. дис. … канд. хім. наук: 01.04.18 / ІХП ім. О.О. Чуйка НАН України. – Київ, 2011. – 23 с.

36. Айлер Р. Химия кремнезема. – Москва: Мир, 1982. Ч. 1. – 416 с.




Copyright (©) 2014 T. Yu. Dmytrenko, K. S. Kulyk, K. V. Voitko, O. N. Bakalinska, N. V. Borysenko, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.