Chemistry, Physics and Technology of Surface, 2015, 6 (2), 179-189.

XPS and TPR study of sol-gel derived M/TiO2 powders (M=Co, Cu, Mn, Ni)



DOI: https://doi.org/10.15407/hftp06.02.179

I. S. Petrik, G. V. Krylova, O. O. Kelyp, L. V. Lutsenko, N. P. Smirnova, L. P. Oleksenko

Abstract


Produced by templated sol-gel method mesoporous nanosized titania powders modified with 3d-metal ions have been characterized by XPS and TPR methods. Metal species formed on the titania surface were investigated. The TPR analysis showed that reduction behaviors of the Mn+/TiO2 were strongly affected by the synthesis method, preparation conditions and interactions between the dopant metal and TiO2 matrix. It was found that Ti–O–M– bonds formation during sol-gel synthesis with  applying nonionic triblock copolymer Pluronic P123 as organic template and calcination at 550 °C promoted high-dispersion states of doped 5 % metals. The XPS and TPR showing dopants exist as divalent and trivalent ions for Mn+/TiO2, where M=Co, Ni, Mn, and as monovalent and divalent ions in the case of Cu/TiO2.

Keywords


mesoporous Mn+/TiO2 powders; Con+; Nin+; Mnn+ and Cun+ transition metals; XPS; H2–TPR

Full Text:

PDF

References


1. Umebayashi T., Yamaki T., Itoh H., Asai K. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids . 2002. 63: 1909.

2. Carp O., Huisman C.L., Reller A. Photo-induced reactivity of titanium dioxide. Prog. Solid State Chem. 2004. 32 (1): 33.

3. Ghasemi S., Rahimnejad S., Rahman Setayesh S., Rohani S., Gholami M.R. Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid. J. Hazard. Mater. 2009. 172(2): 1573.

4. López R., Gómez R., Lianos M.E. Photophysical and photocatalytical properties of nanosized copper-doped titania sol-gel catalysts. Catal. Today. 2009. 148 : 103.

5. Gomathi Devi L., Girish Kumar S. Influence of physicochemical–electronic properties of transition metal ion doped polycrystalline titania on the photocatalytic degradation of Indigo Carmine and 4-nitrophenol under UV/solar light. Appl. Surf. Sci . 2011. 257(7): 2779.

6. Kim H.-J., Lu L., Kim J.-H. Lee C.-H., Hyeon T., Choi W., Lee H.-I. UV Light induced photocatalytic degradation of cyanides in aqueous solution over modified TiO2. Bull. Korean Chem. Soc . 2001. 22(12): 1371.

7. Navío J.A., Juan J.T., Djedjeian P., Padrón J.R., Padrón J.R., Rodrı́guez D., Litter M.I. Iron-doped titania powders prepared by a sol-gel method. Part II: Photocatalytic properties. Appl. Catal. A . 1999. 178(2): 191.

8. Zhang F., Jin R., Chen J., Shao C. Shao C., Gao W., Li L., Guan N. High photocatalytic activity and selectivity for nitrogen in nitrate reduction on Ag/TiO2 catalyst with fine silver clusters, J. Catal . 2005. 232(2): 424.

9. Sá J., Aguüera C. A., Gross S., Anderson J.A. Photocatalytic nitrate reduction over metal modified TiO2. Appl. Catal. B . 2009. 85: 192.

10. Kelyp A.A., Petrik I.S., Losovsky А.V. Synthesis of photocatalytically active dispersions ТіО2/Мn+ (М=Co, Ni, Mn, Cu) for denitrification of water. Nanosystems, Nanomaterials, Nanotechnologies . 2012. 10(4): 789.

11. Suriye K., Praserthdam P., Jongsomjit B. Effect of surface sites of TiO2 support on the formation of cobalt-support compound in Co/TiO2 catalysts. Catal. Comm. 2007. 8: 1772.

12. Duvenhage D.J., Coville N.J. Fe:Co/TiO2 bimetallic catalysts for the Fischer–Tropsch reaction Part 2. The effect of calcination and reduction temperature. Appl. Catal. A . 2002. 233: 63.

13. Coville N.J., Li J. Effect of boron source on the catalyst reducibility and Fischer-Tropsch synthesis activity of Co/TiO2 catalysts. Catal. Today . 2002. 71: 403.

14. Kelyp A.A., Smirnova N.P., Oleksenko L.P. et al. Catalytic activity of Со/SіО2 and Со/ТіО2 nanosized systems in the oxidation of carbon monoxide. Rus. J. Phys. Chem. A . 2013. 87: 1015.

15. Petrik I., Kelyp О., Vorobets V. Smirnova N., Frolova O., Oranska O., Kolbasov G., Eremenko A. Synthesis, optical, electro- and photocatalytic properties of nanosized TiO2 -films modified with transition metal (Co, Ni, Mn, Cu)-ions. Hìm. Fìz. Tehnol. Poverhnì. 2011. 2(4): 418.

16. Kelyp О., Petrik I., Vorobets V., Smirnova N.P., Kolbasov G.Ya. Sol-gel synthesis and characterization of mesoporous TiO2 modified with transition metal ions (Co, Ni, Mn, Cu). Hìm. Fìz. Tehnol. Poverhnì. 2013. 4(1): 105.

17. Krylova G.V., Gnatyuk Yu.I., Smirnova N.P., Eremenko A.M., Gun’ko V.M. Ag nanoparticles deposited onto silica, titania and zirconia mesoporous films synthesized by sol-gel template method. J. Sol-Gel Sci . Technol. 2009. 50(2): 216.

18. Garbassi F., Balducci L. Preparation and characterization of spherical TiO2-SiO2 particles. Micropor. Mesopor. Mater. 2001. 47 (2): 51.

19. Keränen J., Guimon C., Iiskola E., Aurouxa A., Niinistö L. Atomic layer deposition and surface characterization of highly dispersed titania/silica-supported vanadia catalysts, Catal. Today . 2003. 78(1): 149.

20. Wagner C.D., Moulder J.F., Davis L.E., Riggs W.M. Handbook of X-ray Photoelectron Spectroscopy. (New York: Perkin-Elmer Corp., 1979).

21. Nefedov V.I. Roentgenelectronic spectroscopy of chemical compounds: Handbook. (Мoscow: Khimija, 1984). [in Russian].

22. Nowitzki T., Carlsson A.F., Martyanov O., Naschitzki M., Zielasek V., Risse T., Schmal M., Freund H.-J., Bäumer M. Oxidation of alumina-supported Co and Co–Pd model catalysts for the Fischer-Tropsch reaction. J. Phys. Chem. C . 2007. 111(24): 8566.

23. Jeong B.-S., Heo Y.W., Norton D.P. Spatial distribution and electronic state of Co in epitaxial anatase CoxTi1-xO2 thin films grown by reactive sputtering. Appl. Phys. Lett. 2004. 84: 2608.

24. Guo Q., Liu Yu. MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases. Appl. Catal. B. 2008. 82: 19.

25. Chu W., Chernavskii P.A., Gengembre L. Pankina G.A., Fongarland P., Khodakov A.Y. Cobalt species in promoted cobalt-alumina-supported Fischer-Tropsch catalysts. J. Catal . 2007. 252: 215.

26. Berenguer R., Valdes-Solis T., Fuertes A.B., Quijada C., Morallón E. Cyanide and phenol oxidation on nanostructured Co3O4 electrodes prepared by different methods. J. Electrochem. Soc. 2008. 155(7): 1.

27. Barakat M.A., Hayes G., Shan S.I. Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J. Nanosci. Nanotech . 2005. 10: 1.

28. Tang Q., Zhang Q., Wang P., Wang Y., Wan H. Characteristics of cobalt oxide nanoparticles within faujasite zeolites and the formation of metallic cobalt. Chem. Mater . 2004. 16(10): 1967.

29. Chupin C., van Veen A.C., Konduru M., Després J., Mirodatos C. Identity and location of active species for NO reduction by CH over Co-ZSM-5. J. Catal. 2006. 241 (1): 103.

30. Feng Y., Li L., Niu Sh., Qua Y., Zhang Q., Li Y., Zhao W., Li H., Shi J. Controlled synthesis of highly active mesoporous Co3O4 polycrystals for low temperature CO oxidation, Appl. Catal. B. 2012. 111–112(12): 461.

31. Rizhi Ch., Yan D., Weihong X., Nanping X. The effect of titania structure on Ni/TiO2 catalysts for p-nitrophenol hydrogenation. Chinese J. Chem. Eng . 2006. 14: 665.

32. Wu Y., He Y., Chen T., Weng W., Wan H. Low temperature catalytic performance of nanosized Ti–Ni–O for oxidative dehydrogenation of propane to propene. Appl. Surf. Sci . 2006. 252: 5220.

33. Hoffer B.W., van Langeveld A.D., Janssens J.-P., Bonné R.L.C., Lok C. M., Moulijn J.A. Stability of highly dispersed Ni/Al2O3 catalysts: effect of pretreatment. J. Catal. 2000. 192(2): 432.

34. Kantcheva M., Kucukkal M.U., Suzer S. Spectroscopic investigation of species arising from CO chemisorrption on titania-supported manganese. J. Catal. 2000. 190 : 144.

35. Luo, J.-Y., Meng M., Li X., Li X.-G., Zha Y.-Q., Hu T.-D., Xie Y.-N., Zhang J. Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeOcatalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation. J. Catal . 2008. 254(2): 310.

36. Oliveira H.A., Franceschini D.F., Passos F.B. Support Effect on Carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts. J. Braz. Chem. Soc . 2012. 23: 868.

37. Tang Ch.-W., Wang Ch.-B., Chien Sh.-H. Characterization of cobalt oxides studied by FT-IR, Raman, TPR and TG-MS. Thermochimica Acta. 2008. 473 : 68.

38. Wang C.-B., Tang C.-W., Tsai H.-Ch, Chien Sh.-H. Characterization and catalytic oxidation of carbon monoxide over supported cobalt catalysts. Catal. Lett . 2006. 107: 223.

39. Morales F., de Groot F.M.F., Gijzeman O.L.J., Mens A., Stephan O., Weckhuysen B.M. Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J. Catal . 2005. 230(2): 301.

40. Loc L.C., Huan Ng.M., Dung Ng.K. Phuc Ng.H.H., Thoang H.S. Study on methanation of carbon monoxide over catalysts NiO/TiO2 and NiO/g-Al2 O3. Adv. Natural Sci. 2006. 7(2): 91.

41. Ettireddy P., Ettireddy N., Mamedov S., Boolchand P., Smirniotis P.G.. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3 . Appl. Catal. B. 2007. 76(1): 123.

42. Derylo-Marczewska A., Gac W., Popivnyak N., Zukocinski G., Pasieczna S. The influence of preparation method on the structure and redox properties of mesoporous Mn-MCM-41 materials. Catal. Today . 2006. 114(2): 293.

43. Liang S., Teng F., Bulgan G., Zong R., Zhu Y. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C . 2008. 112(14): 5307.

44. Wang. Y., Song Z., Ma D., Luo H., Liang D., Bao X. Characterization of Rh-based catalysts with EPR, TPR, IR and XPS. J. Mol. Catal. A. 1997. 149 (1): 51.

45. Park E., Le H.A., Kim Ye.S., Chin S., Bae G.N., Jurng J. Preparation and characterization of Mn2O3/TiOnanomaterials synthesized by combination of СМС and impregnation method with different Mn loading concentration. Mater. Res. Bull. 2012. 47(4): 1040.

46. Tang X., Li J., Suna L, Hao J. Origination of N2O from NO reduction by NHover β-MnO2 and α-Mn2O3. Appl. Catal. B. 2010. 99: 156.

47. Zou H., Dong X., Lin W. CO selective oxidation in hydrogen-rich gas over copper-series catalysts. J. Natural Gas Chem. 2005. 14 : 29.

48. Chen Ch.-Sh., You Y.-H., Lin J.-H., Chen Yu.-Yu. Effect of highly dispersed active sites of Cu/TiO2 catalyst on CO oxidation. Catal. Comm . 2008. 9: 2381.

49. Cordoba G., Viniegra M., Fierro J.L.G. TPR, ESR, and XPS study of Cu2+ ions in sol-gel–derived TiO2. J. Solid State Chem . 1998. 138: 1.

50. Li K., Wang Ya., Wang Sh. A comparative study of CuO/TiO2-SnO2, CuO/TiO2 , and CuO/SnO2 for methanol dehydrogenation. J. Natural Gas Chem. 2009. 18: 1.

51. Rong Zh., Yuhan S., Shaoyi P. Comparative study of Cu/TiO2 and Cu/ZrO2 for methanol dehydrogenation. J. Natural Gas Chem . 2000. 9: 110.

52. Coloma F., Marquez F., Rochester C.H., Anderson J.A. Determination of the nature and reactivity of copper sites in Cu-TiO2 catalysts. Phys. Chem. Chem. Phys . 2000. 2: 5320.

53. Guerreiro E.D., Gorriz O.F., Rivarola J.B., Arrua L.A. Characterization of Cu/SiOcatalysts prepared by ion exchange for methanol dehydrogenation. Appl. Catal. A . 1997. 165: 259.

54. Urquieta-Gonzalez E.A., Martins L., Peguin R.P.S., Batista M.S. Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mater. Res . 2002. 5: 321.




DOI: https://doi.org/10.15407/hftp06.02.179

Copyright (©) 2015 I. S. Petrik, G. V. Krylova, O. O. Kelyp, L. V. Lutsenko, N. P. Smirnova, L. P. Oleksenk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.