Chemistry, Physics and Technology of Surface, 2015, 6 (2), 234-238.

Electrophysical properties of heterostructures CuS/ZnS and PCTFE–CuS/ZnS system



DOI: https://doi.org/10.15407/hftp06.02.234

S. L. Prokopenko, G. M. Gunja, S. N. Makhno, P. P. Gorbyk

Abstract


In order to synthesize the polymer composite system of the PCTFE–CuS/ZnS, the nanodispersed ZnS was synthesized by hydrothermal method afterwards heterostructures of CuS/ZnS were obtained using ion-substitution mechanism. The concentration dependence of the real and the imaginary components of the complex dielectric permeability and electrical conductivity of synthesized samples were investigated. Obtained composites have high values of the dielectric permeability at high frequencies and conductivity at low frequencies. At 50 % (molar) substitution of Zn ions by Cu the percolation threshold was determined at the volumetric content of CuS about 0.06.

Keywords


composite materials; disperse filler; polychlorotrifluoroethylene; zinc sulfide; electrical conductivity

Full Text:

PDF

References


1. Yu X., Yu J., Cheng B., Huang B. One-pot template-free synthesis of monodisperse zinc sulfide hollow spheres and their photocatalytic properties, Chemistry – A European Journal, 15 (2009) 6731.

2. Jang J.S., Yu C.-J., Choi S.H. et al. Topotactic synthesis of mesoporous ZnS and ZnO nanoplates and their photocatalytic activity, J. Catal., 254 (2008) 144.

3. Kang T., Sung J., Shim W. et al. Synthesis and magnetic properties of single-crystalline Mn/Fe-doped and Co-doped ZnS nanowires and nanobelts, J. Phys. Chem. C, 113 (2009) 5352.

4. Hu J., Bando Y., Zhan J., Golberg D. Growth of wurtzite ZnS micrometer-sized diskettes and nanoribbon arrays with improved luminescence, Advanced Functional Materials, 15 (2005) 757.

5. Ganiuk L.N., Ignatkov V.D., Makhno S.N., Soroka P.N. Study of dielectric properties of the fibrous material, Ukr. Phys. J., 40 (1995) 627 (in Russian).

6. Hernández-Gordillo A., Tzompantzi F., Gómez R., Calderón-Benavides H. Preparation and characterization of the hybrid ZnS(en)0.5–CdS heterojunction, Mater. Lett., 115 (2014) 147.

7. Deng Z-X, Wang C, Sun X-M, Li Y-D. Structure directing coordination template effect of ethylenediamine in formation of ZnS and ZnSe, Inorg. Chem., 41 (2002) 869.

8. Prokopenko S.L., Gunja G.M., Makhno S.N., Gorbyk P.P. Synthesis and electrophysical properties of heterostructures CuS/CdS та Ag2S/CdS, Surface, 5 (2013) 200 (in Ukrainian).

9. Almond D.P., West A.R. Anomalous conductivity prefactors in fast ion conductors, Nature, 306 (1983) 456.

10. Zhang J., Yu J., Zhang Y., Li Q., Gong J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer, Nano Lett., 11 (2011) 4774.




DOI: https://doi.org/10.15407/hftp06.02.234

Copyright (©) 2015 S. L. Prokopenko, G. M. Gunja, S. N. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.