Chemistry, Physics and Technology of Surface, 2016, 7 (2), 119-132.

Оrganic-inorganic ion-exchanger containing zirconium hydrophosphate for removal of uranium(VI) compounds from aqueous solutions



DOI: https://doi.org/10.15407/hftp07.02.119

Yu. S. Dzyazko, N. A. Perlova, O. V. Perlova, V. F. Sazonova, L. N. Ponomareva, Yu. M. Volfkovich, A. V. Palchik, V. V. Trachevsky, V. N. Belyakov

Abstract


In order to obtain organic-inorganic ion-exchanger, a method has been proposed involving reorganization of n gel-like cation exchange matrix in non-aqueous media followed by zirconium hydrophosphate precipitation. Reorganization, which is confirmed with methods of standard contact porosimetry and NMR 23Na spectroscopy, means a narrowing of transport pores of the polymer. As a result of precipitation in the reorganized matrix, aggregates of zirconium hydrophosphate nanoparticles are formed. Scanning electron microscopy has shown the size of these formations to be of 200 nm in diameter. It has been found with a method of X-ray fluorescence analysis, a molar ratio of Zr:P in the inorganic constituent is 1:0.31. The regularities of precipitation are considered from the point of view of Ostwald-Freundlich and Volfkovich equations. inorganic method with a low content of phosphorus. Small size of the incorporated particles provides high rate of removal of U(VI) cationic compounds from individual aqueous solution containing also HCl (pH 2.5). The regime of sorption is mixed-diffusion, the coefficients of U(VI) → H+ exchange for particle diffusion are 5.45∙10–12 (composite), 3.86∙10–12 (unmodified resin), 4.75∙10–14 (individual zirconium hydrophosphate) m2s–1. In the case of sorption from the solution containing also Fe(III), U(VI) sorption is complicated with a chemical reaction of the pseudo-second order. In opposite to unmodified resin, the composite removes U(VI) compounds in a wide range of the solution pH (2–10).

Keywords


organic-inorganic ion exchanger; aggregates of nanoparticles; standard contact porosimetry; zirconium hydrophosphate; U(VI) compounds

Full Text:

PDF (Русский)

References


1. Kawakami F., Tokiwai M., Fujii Ya. Plant designing of ion exchange chemical uranium enrichment and its non-proliferation aspects. Prog. Nucl. Energy. 2011. 53(7): 974. https://doi.org/10.1016/j.pnucene.2011.04.019 

2. Zaganiari E.J. Ion Exchange Resins in Uranium Hydrometallurgy. (Paris: Books on Demand France, 2009).

3. Yaroshenko N.A., Sazonova V.F., Perlova O.V., Perlova N.A. Sorption of uranium compounds by zirconium-silica nanosorbents. Russian J. Appl. Chem. 2012. 85(6): 849. https://doi.org/10.1134/S107042721206002X 

4. Perlova O.V., Sazonova V.F., Perlova N.A., Yaroshenko N.A. Kinetics of sorption of uranium(VI) compounds with zirconium–silica nanosorbents. Russian J. Phys. Chem. A. 2014. 88(6): 1012.  https://doi.org/10.1134/S0036024414060223 

5. Vesely V., Ruvarac A., Sedlakova L. Sorption of uranyl ions on zirconium phosphates at elevated temperatures. J. Inorg. Nucl. Chem. 1968. 30(4): 110. https://doi.org/10.1016/0022-1902(68)80330-6 

6. Borovinskii V.A., Lyzlova E.V., Ramazanov L.M. Sorption of uranium on zirconium phosphate inorganic cation exchanger. Radiochem. 2001. 43(1): 84. https://doi.org/10.1023/A:1012834424745 

7. Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Sosenkin V.E., Belyakov V.N. Polymer ion-exchangers modified with zirconium hydrophosphate for removal of Cd2+ ions from diluted solutions. Sep. Sci. Technol. 2013. 48(14): 2140. https://doi.org/10.1080/01496395.2013.794434 

8. Dzyazko Yu.S., Ponomaryova L.N., Volfkovich Yu.M., Trachevskii V.V., Palchik A.V. Ion-exchange resin modified with aggregated nanoparticles of zirconium hydrophosphate. Morphology and functional properties. Microporous Mesoporous Mater. 2014. 198: 55. https://doi.org/10.1016/j.micromeso.2014.07.010 

9. Sarkar S., Chatterjee P.K., Cumbal L.H., SenGupta, A.K. Hybrid ion exchanger supported nanocomposites: Sorption and sensing for environmental applications. Chem. Eng. J. 2011. 166(3): 923. https://doi.org/10.1016/j.cej.2010.11.075 

10. Zhang Q.R., Du W., Pan B.C., Pan B.J., Zhang W.M., Zhang Q.J., Xu Z.W., Zhang Q.X. A comparative study on Pb2+, Zn2+ and Cd2+ sorption onto zirconium phosphate supported by a cation exchanger. J. Hazard. Mater. 2008. 152(2): 469. https://doi.org/10.1016/j.jhazmat.2007.07.012 

11. Dzyazko Yu., Rozhdestvenska L., Palchik A., Lapicque F. Ion-exchange properties and mobility of Cu2+ ions in zirconium hydrophosphate ion exchangers. Sep. Purif. Technol. 2005. 45(2): 141. https://doi.org/10.1016/j.seppur.2005.03.005 

12. Frolov Yu.G., Grodskii A.S. (Eds.). Laboratory works and tasks on colloidal chemistry. (Moscow: Khimiya, 1986). [in Russian].

13. Volfkovich Yu.M., Sosenkin V.E. Porous structure and wetting of fuel cell components as the factors determining their electrochemical characteristics. Russian Chem. Rev. 2012. 81: 936. https://doi.org/10.1070/RC2012v081n10ABEH004281 

14. Volfkovich Yu.M., Bagotsky V.S. Experimental methods for investigation of porous materials and powders. Porous materials and powders used in different fields of science and technology. (London: Springer-Verlag, 2014). https://doi.org/10.1007/978-1-4471-6377-0_1 

15. Skorovarov D.I. (Ed.). Hydrometallurgical processing of uranium ore raw materials. (Moscow: Atomizdat, 1979). [in Russian].

16. Markov V.K., Vernii E.A., Vinogradov A.V. Uranium. Methods of its identification. (Moscow: Atomizdat, 1964). [in Russian].

17. Myerson A.S. Handbook of Industrial Crystallization. (Woburn: Butterworth-Heinemann, 2002).

18. Zabolotskii V.I., Nikonenko V.V. The ionic transport in membranes. (Moscow: Nauka, 1996). [in Russian].

19. Volfkovich Yu.M. The influence of the electric double layer at the inner interface surface of the ion exchanger on its electrochemical and sorption properties. Electrochemistry. 1984. 20(5): 665 [in Russian].

20. Eikerling M, Kharkats Y.I, Kornyshev A.A, Volfkovich Y.M. Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes. J. Electrochem. Soc. 1998. 145(8): 2684. https://doi.org/10.1149/1.1838700 

21. Polyanskii N.G., Gorbunov G.V., Polyanskaya N.L. Investigation methods of ion exchangers. (Moscow: Khimiya, 1976). [in Russian].

22. Gelferih F. The ion exchangers. Principles of ion exchange. (Moscow: Atomizdat, 1962). [in Russian].

23. Zhao G., Wu X., Tan X, Wang X. Sorption of heavy metal ions from aqueous solutions: a review. Open Colloid Sci. J. 2011. 4: 19. https://doi.org/10.2174/1876530001104010019

24. Dzyazko Yu.S., Trachevskii V.V., Rozhdestvenskaya L.M., Vasilyuk S.L., Belyakov V.N. Interaction of sorbed Ni(II) ions with amorphous zirconium hydrogen phosphate. Russian J. Phys. Chem. A. 2013. 87(5): 840.  https://doi.org/10.1134/S0036024413050063 

25. Cormelis R.. Caruso J.A, Crews H., Heumann K.G. (Eds.). Handbook of elemental speciation II. Species in the environment, food, medicine and occupational health (Chichester, UK: Wiley, 2005): 509.




DOI: https://doi.org/10.15407/hftp07.02.119

Copyright (©) 2016 Yu. S. Dzyazko, N. A. Perlova, O. V. Perlova, V. F. Sazonova, L. N. Ponomareva, Yu. M. Volfkovich, A. V. Palchik, V. V. Trachevsky, V. N. Belyakov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.