Kinetic and equilibrium studies of doxorubicin adsorption on MCM-41-type silica surface
DOI: https://doi.org/10.15407/hftp07.04.405
Abstract
Keywords
References
1. Perry M.C. The Chemotherapy Source Book, 2nd edn. (Baltimore: Williams@Wilkins, 1996).
2. Bally M.B., Nayar R., Masin D., Cullis P.R., Mayer L.D. Studies on the myelosuppressive activity of doxorubicin entrapped in liposomes. Cancer Chemotherapy and Pharmacology. 1990. 27(1): 13. https://doi.org/10.1007/BF00689270
3. Sumeet G., Swati M. Doxorubicin Induced Cardiotoxicity: The Spice Retreat. (Saarbruecken: Lambert Academic Publishing, 2014).
4. Roik N.V., Belyakova L.A. Cyclodextrin based drug stabilizing system. J. Mol. Struct. 2011. 987(13): 225.
5. Lee C.-H., Cheng S.-H., Huang I.-P., Souris J.S., Yang C.-S., Mou C.-Y., Lo L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. 2010. 122(44): 8390. https://doi.org/10.1002/ange.201002639
6. Meng H., Xue M., Xia T., Zhao, Y.-L., Tamanoi, F., Stoddart, J.F., Zink,J.I., Nel A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 2010. 132(36): 12690. https://doi.org/10.1021/ja104501a
7. Gao Y., Chen Y., Ji X., He X., Yin Q., Zhang Z., Shi J., Li Y. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. Am. Chem. Sci. 2011. 5(12): 9788. https://doi.org/10.1021/nn2033105
8. Knezevic N.Z., Trewyn B.G., Lin V.S.-Y. Light- and pH-responsive release of doxorubicin from a mesoporous silica based nanocarrier. Chem. Eur. J. 2011. 17(12): 3338. https://doi.org/10.1002/chem.201002960
9. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Coll. Interf. Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085
10. Zhang X., Clime L., Roberge H., Normandin F., Yahia L.H., Sacher E., Veres T. pH-Triggered doxorubicin delivery based on hollow nanoporous silica nanoparticles with free-standing superparamagnetic Fe3O4 cores. J. Phys. Chem. C. 2011. 115(5): 1436. https://doi.org/10.1021/jp1075498
11. Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Micropor. Mesopor. Mater. 2012. 161: 160. https://doi.org/10.1016/j.micromeso.2012.05.035
12. Chen Y., Yang W., Chang B., Hu H., Fang X., Sha X. In vivo distribution and antitumor activity of doxorubicin-loaded N-isopropylacrylamide-co-methacrylic acid coated mesoporous silica nanoparticles and safety evaluation. Europ. J. Pharm. Biopharm. 2013. 85(3): 406. https://doi.org/10.1016/j.ejpb.2013.06.015
13. Hu X., Hao X., Wu Y., Zhang J., Zhang X., Wang P.C., Zou G., Liang X. J. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J. Mater. Chem. B. 2013. 1: 1109. https://doi.org/10.1039/c2tb00223j
14. Mishra A.K., Pandey H., Agarwal V., Ramteke P.W., Pandey A.C. Nanoengineered mesoporous silica nanoparticles for smart delivery of doxorubicin. J. Nanopart. Res. 2014. 16: 2515. https://doi.org/10.1007/s11051-014-2515-y
15. Lee C.-H., Cheng S.-H., Huang I.-P., Souris J.S., Yang C.-S., Mou C.-Y., Lo L. W. Intracellular pH-responsive mesoporous silica nanoparticles for the controlled release of anticancer chemotherapeutics. Angew. Chem. 2010. 122: 8390. https://doi.org/10.1002/ange.201002639
16. Meng H., Xue M., Xia T., Zhao Y.-L., Tamanoi F., Stoddart J.F., Zink J.I., Nel A.E. Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. J. Am. Chem. Soc. 2010. 132: 12690. https://doi.org/10.1021/ja104501a
17. Knezevic N.Z., Trewyn B.G., Lin V.S.-Y. Light- and pH-responsive release of doxorubicin from a mesoporous silica based nanocarrier. Chem. Eur. J. 2011. 17: 3338. https://doi.org/10.1002/chem.201002960
18. Lee J.E., Lee D.J., Lee N., Kim B.H., Choi S.H., Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for pH controlled drug release and dual modal imaging. J. Mater. Chem. 2011. 21: 16869. https://doi.org/10.1039/c1jm11869b
19. Yuan L., Tang Q., Yang D., Zhang J.Z., Zhang F., Hu J. Preparation of pH-responsive mesoporous silica nanoparticles and their application in controlled drug delivery. J. Phys. Chem. C. 2011. 115: 9926. https://doi.org/10.1021/jp201053d
20. Gu J., Su S., Zhu M., Li Y., Zhao W., Duan Y., Shi J. Targeted doxorubicin delivery to liver cancer cells by PEGylated mesoporous silica nanoparticles with a pH-dependent release profile. Micropor. Mesopor. Mater. 2012. 161: 160. https://doi.org/10.1016/j.micromeso.2012.05.035
21. Hu X., Hao X., Wu Y., Zhang J., Zhang X., Wang P.C., Zou G., Liang X. J. Multifunctional hybrid silica nanoparticles for controlled doxorubicin loading and release with thermal and pH dual response. J. Mater. Chem. B. 2013. 1: 1109. https://doi.org/10.1039/c2tb00223j
22. Knezevic N.Z., Ruiz-Hernandez E., Hennink W.E., Vallet-Regi M. Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Adv. 2013. 3: 9584. https://doi.org/10.1039/c3ra23127e
23. Kim M.S., Jeon J.B., Chang J.Y. Selectively functionalized mesoporous silica particles with the PEGylated outer surface and the doxorubicin-grafted inner surface: improvement of loading content and solubility. Micropor. Mesopor. Mater. 2013. 172: 118. https://doi.org/10.1016/j.micromeso.2013.01.028
24. Roik N.V., Belyakova L.A. Sol-gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface. J. Solid State Chem. 2013. 207: 194. https://doi.org/10.1016/j.jssc.2013.09.027
25. Roik N.V., Belyakova L.A. Chemical design of pH-sensitive nanovalves on outer surface of mesoporous silicas for controlled storage and release of aromatic amino acid. J. Solid State Chem. 2014. 215: 284. https://doi.org/10.1016/j.jssc.2014.04.018
26. Florey K., ed. Analytical Profiles of Drug Substances. V. 9 (New York: Academic Press Inc., 1980).
27. Gritti F., Guiochon G. New thermodynamically consistent competitive adsorption isotherm in RPLC. J. Coll. Int. Sci. 2003. 264(1): 43. https://doi.org/10.1016/S0021-9797(03)00332-1
28. Ebadi A., Mohammadzadeh J.S.S., Khudiev A. What is correct form of BET isotherm for modeling liquid phase adsorption. Adsorption. 2009. 15(1): 65.https://doi.org/10.1007/s10450-009-9151-3
DOI: https://doi.org/10.15407/hftp07.04.405
Copyright (©) 2016 N. V. Roik, L. A. Belyakova, M. O. Dziazko
This work is licensed under a Creative Commons Attribution 4.0 International License.