Chemistry, Physics and Technology of Surface, 2017, 8 (2), 120-132.

Physical-chemical and photocatalytic studies of equimolar composition ZnO-SnO2 modified via hydrothermal and thermal treatment



DOI: https://doi.org/10.15407/hftp08.02.120

V. V. Sydorchuk, S. V. Khalameida, L. O. Davydenko, O. I. Zakutevsky

Abstract


We studied the interaction in mixture of low-dispersed crystalline zinc and tin oxides as well as in their coprecipitated X-ray amorphous composition under hydrothermal and thermal treatment. The aims of work were the study of phase composition and porous structure of obtained products as well as evaluation of their photocatalytic activity under visible light. We used XRD and DTA-TG analysis, FTIR and UV-Vis spectroscopy, adsorption-desorption of nitrogen and photocatalytic degradation for characterization of prepared oxide compositions. Hydrothermal treatment at 200–300 °C does not lead to formation of new crystal phases. On the other hand, zinc stannates are formed under the same conditions from coprecipitated oxides. Stannates possess high specific surface area (166–227 m2/g) and developed and regulated micro-mesoporous structure (total pore volume – 0.13–0.27 cm3/g). The investigation of Rhodamin B photocatalytic degradation in visible region shows that oxides mixture possesses the higher activity than zinc stannates, although the latter have the higher value of specific surface area. However, accessibility of internal surface of porous stannates for dye molecules is obviously insufficient. The rate constant of photocatalytic degradation of Rhodamine B is 4.6–11.2·10-5 s-1 when modified low-dispersed compositions are used as catalysts. The degree of dye mineralization achieves 57 %.


Keywords


zinc meta- and ortho stannates; crystalline and micro-mesoporous structure; Rhodamine B; photocatalytic activity

Full Text:

PDF (Українська)

References


1. Shi J., Guo L. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International. 2012. 22(6):592. https://doi.org/10.1016/j.pnsc.2012.12.002

2. Zeng J., Xin M., Li K., Wang H., Yan H., Zhang W. Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. J. Phys. Chem. C. 2008. 112(11): 4159. https://doi.org/10.1021/jp7113797

3. Sivapunniyam A., Wiromrat N., Myint M., Dutta J. High-performance liquefied petroleum gas sensing based on nanostructures of zinc oxide and zinc stannate. Sens. Actuators B. 2011. 157(1): 232. https://doi.org/10.1016/j.snb.2011.03.055

4. Singh R., Yadav A. K., Gautam C. Synthesis and humidity sensing investigations of nanostructured ZnSnO3. Journal of Sensor Technology. 2011. 1(4):116. https://doi.org/10.4236/jst.2011.14016

5. Choi S.H., Hwang D., Kim D.Y., Kervella Y., Maldivi P., Jang S.-Y., Demadrille R., Kim I.-D. Amorphous zinc stannate (Zn2SnO4) nanofibers networks as photoelectrodes for organic dye-sensitized solar cells. Adv. Funct. Mater. 2013. 23(25):3146. https://doi.org/10.1002/adfm.201203278

6. Lana-Villarreal T., Boschloo G., Hagfeldt A. Nanostructured Zinc Stannate as semiconductor working electrodes for dye-sensitized solar cells. J. Phys. Chem. C. 2007. 111(14): 5549. https://doi.org/10.1021/jp0678756

7. Kovacheva D., Petrov K. Preparation of crystalline ZnSnO3 from Li2SnO by low-temperature ion exchange. Solid State Ionics.1998. 109(3–4): 327. https://doi.org/10.1016/S0167-2738(97)00507-9

8. Baruah S., Dutta J. Zinc stannate nanostructures:hydrothermal synthesis. Sci. Technol. Adv. Mater. 2011. 12:013004. https://doi.org/10.1088/1468-6996/12/1/013004

9. Mali S.S., Shim C.S., Hong C. K. Highly porous zinc stannate (Zn2SnO4) nanofibers scafold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Scientific Reports. 2015. 5:11424. https://doi.org/10.1038/srep11424

10. Leboda R., Charmas B., Sidorchuk V.V. Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. Part I. Modification of porous and crystalline structures. Adsorp. Sci. Technol. 1997. 15(3):189. https://doi.org/10.1177/026361749701500305

11. Leboda R., Charmas B., Sidorchuk V.V. Physicochemical and technological aspects of hydrothermal modification of complex sorbents and catalysts. Part II. Modification of phase composition and mechanical properties. Adsorp. Sci. Technol. 1997. 15(3): 215. https://doi.org/10.1177/026361749701500306

12. Rouquerol J., Anvir D., Fairbridge C.W., Everett D.H., Haynes J.H., Pernicone N., Ramsay J.D., Sing K.S., Unger K.K. Recommendations for the characterization of porous solids. Technical Report. Pure Appl. Chem. 1994. 66(8): 1739.

13. Amato I., Martorana D., Silengo B. Sintering of pelleted catalysts for automotive emission controil. Sintering and Catalysis. (New York-London: Edited by G. Kuczyns, Plenum Press, 1975).

14. Hampsey J.E., DeCastro C.L., McCaughey B., Wang D., Mitchell B.S., Lu Y. Preparation of micrometer- to sub-micrometer-sized nanostructured silica particles using high-energy ball milling. J. Am. Ceram. Soc. 2004. 87(7): 1280. https://doi.org/10.1111/j.1151-2916.2004.tb07723.x

15. Sydorchuk V., Khalameida S., Zazhigalov V., Skubiszewska-Zięba J., Leboda R., Wieczorek-Ciurowa K. Influence of mechanochemical activation in various media on structure of porous and non-porous silicas. Appl. Surf. Sci. 2010. 257(2): 446. https://doi.org/10.1016/j.apsusc.2010.07.009

16. Chen F., Zhao J., Hidaka H. Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst. Int. J. Photoenergy. 2003. 5(4):209. https://doi.org/10.1155/S1110662X03000345

17. Kryukov A., Stroyuk A., Kuchmiy S., Pokhodenko V. Nanophotocatalysis. (Kyiv: Nanoperiodika, 2013). [in Russian].

18. Fu H., Zhang S., Xu T., Zhu Y., Chen J. Ptotocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products. Environ. Sci. Technol. 2008. 42(6): 2085. https://doi.org/10.1021/es702495w

19. Ping Q., Jincai Z., Tao S., Hisao H. TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. J. Mol. Catal. A. 1998. 129(2–3): 257.

20. Rahman Q.I., Ahmad M., Misra S.K., Lohani M. Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles. Mater. Lett. 2013. 91:170–174. https://doi.org/10.1016/j.matlet.2012.09.044

21. Ali M.A., Idris M.R., Quayum M.E. Fabrication of ZnO nanoparticles by solutioncombustion method for the photocatalytic degradation of organic dye. J. Nanostruc. Chem. 2013. 3: 1. https://doi.org/10.1186/2193-8865-3-36

22. He Z., Zhou J. Synthesis, characterization, and activity of tin oxide nanoparticles: influence of solvothermal time on photocatalytic degradation of Rhodamine B. Modern Research in Catalyl. 2013. 2(3A): 13. https://doi.org/10.4236/mrc.2013.23A003

23. Jia Z-Q., Sun H.-J., Wang Y., Zhen T.L, Chang Q. Facile synthesis of tin oxide nanocrystals and their photocatalytic activity. Trans. Nonferrous Met. Soc. China. 2014. 24(6):1813. https://doi.org/10.1016/S1003-6326(14)63258-1

24. Davis M., Hikal W.M., Gümeci C., Hope-Weeks L.J. Aerogel nanocomposites of ZnO–SnO2 as efficient photocatalysts for the degradation of rhodamine B. Catal. Sci. Technol. 2012. 2(5):922. https://doi.org/10.1039/c2cy20020a

25. Zhu Z.F., Zhou J.Q., Wang X.F., He Z.L., Liu H. Effect of pH on photocatalytic activity of SnO2 microspheres via microwave solvothermal route. Mater. Research Innovat. 2014. 18(1): 8. https://doi.org/10.1179/1433075X12Y.0000000043

26. Wang G., Lu W., Li J., Choi J., Jeong Y., Choi S.Y., Park J.B., Ryu M. K., Lee K. V-Shaped tin oxide nanostructures featuring a broad photocurrent signal: an effective visible-light-driven photocatalyst. Small. 2006. 2(12): 1436. https://doi.org/10.1002/smll.200600216

27. Rauf M.A., Ashraf S.S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009. 151(1–3): 10. https://doi.org/10.1016/j.cej.2009.02.026

28. Wilhelm P., Stephan D. Photodegradation of rhodamine B in aqueous solution via SiO2-TiO2 nano-spheres. J. Photochem. Photobiol. A. 2007. 185(1): 19. https://doi.org/10.1016/j.jphotochem.2006.05.003




DOI: https://doi.org/10.15407/hftp08.02.120

Copyright (©) 2017 V. V. Sydorchuk, S. V. Khalameida, L. O. Davydenko, O. I. Zakutevsky

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.