Chemistry, Physics and Technology of Surface, 2017, 8 (2), 133-142.

Potassium hydroxide influence on the structure and surface area development of brown coal under alkali activation



DOI: https://doi.org/10.15407/hftp08.02.133

V. O. Kucherenko, Yu. V. Tamarkina, G. F. Rayenko

Abstract


This work was aimed on 1) evaluating alterations of spatial structure and paramagnetic properties of brown coal (BC) caused by KOH intercalated under alkali impregnation and 2) studying KOH influence on BC thermolysis and formation of porous carbons under alkali activation in argon (800 °C, 1 h).

The spatial structure of BC impregnated (BCI) was characterized by X-ray diffraction as parameters of coal crystallites: the interlayer distance d002, height Lc, the average diameter of polyarene (graphene) layer La, the volume Vcr and the average number of layers Ncr. The unpaired electron concentration [е] was measured by ESR. Thermolysis of BC and BCI was described by differential thermogravimetry (4 deg/min) which gave the rates of volatile products formation (ωt) for the thermolysis temperature t = 300, 700, 800 °C.

The relationships of BCI properties (d002, Lc, La, Vкр Nкр, [e], ω300, ω700, ω800,) as well as yield (Y) and specific surface area (SBET) of асtivated carbons versus the alkali/coal ratio RKOH≤15 mmol/g were obtained. They identified two regions: I (RKOH≤6 mmol/g) and II (RKOH>6 mmol/g).

In region I, the RKOH increase enhances the degree of substitution of acid groups protons by K+-ions (with full replacement at RKOH=6 mmol/g), slightly changes the spatial structure, increases the concentration of [e‾] (from 2.7∙1018 to 5.0∙1018 spin/g), linearly decreases the rate ω300 (from 0.12 to 0.03 mg/g∙s) due to alkali promotion of condensation reactions. They are revealed under alkaline activation (800 °С): the solids yield changes on a curve with a maximum at RKOH~2 mmol/g (43 % → 49 % → 39 %), the SBET changes on a curve with a minimum (210 → 120 → 730 m2/g).

In region II, the RKOH increase enhances the coal crystallite volume (from 1.37 до 2.05 nm3) due to KOH intercalation and formation of additional crystallite layers (4 vs 3), linearly raises the ω300 rate (0.03 to 0.20 mg/g∙s) by increasing the contribution of C-O and C-C bonds heterolysis. The active carbons yield decreases (from 39 % to 33 %), the SBET surface grows linearly (from 730 to about 970 m2/g).

The KOH capability to develop the surface was proposed to evaluate by the coefficient KEF=∆SBET/∆RKOH defining the SBET increment with increasing alkali quantities. The KEF values were determined to be significant (200–300 m2/mmol) within RKOH=2.5–4.0 mmol/g. Catalysis of KOH-initiated pore-forming reactions in this RKOH interval is presupposed to be a useful approach of porous structure development at low KOH/coal ratios that is technologically attractive due to decreasing volumes of reagents and alkaline waste water during activated carbon separation.

Keywords


brown coal; potassium hydroxide; spatial structure; activation; specific surface area

Full Text:

PDF (Русский)

References


1. Marsh H., Rodriguez-Reinoso F. Activated carbon. (Amsterdam: Elsevier, 2006).

2. Gonzalez A., Goikoleva E., Barrena J.A., Mysyk R. Review on supercapacitors: technologies and materials. Renewable Sustainable Energy Rev. 2016. 58: 1189. https://doi.org/10.1016/j.rser.2015.12.249

3. Yoshizawa N., Maruyama K., Yamada Y., Ishikawaa E., Kobayashia M., Toda Y., Shiraishi M. XRD evaluation of KOH activation process and influence of coal rank. Fuel. 2002. 81(13): P. 1717. https://doi.org/10.1016/S0016-2361(02)00101-1

4. Lillo-Ródenas M.A., Marco-Lozar J.P., Cazorla-Amorós D., Linares-Solano A. Activated carbons prepared by pyrolysis of mixtures of carbons precursor/alkaline hydroxide. J. Anal. Appl. Pyrolysis. 2007. 80(1): 166. https://doi.org/10.1016/j.jaap.2007.01.014

5. Mikova N.M., Chesnokov N.V., Kuznetsov B.N. Study of high porous carbons prepared by the alkaline activation of anthracites. Journal of Siberian Federal University. Chemistry. 2009. 2(1): 3.

6. He X., Geng Y., Qiu J. et al. Influence of KOH/coke mass ratio on properties of activated carbons made by microwave-assisted activation for electric double-layer capacitors. Energy Fuels. 2010. 24(6): 3603. https://doi.org/10.1021/ef100228b

7. Vilaplana-Ortego E., Lillo-Ródenas M.A., Alca-iz-Monge J., Cazorla-Amorós D., Linares-Solano A.Isotropic petroleum pitch as a carbon precursor for the preparation of activated carbons by KOH activation. Carbon. 2000. 47(8): 2141. https://doi.org/10.1016/j.carbon.2009.04.020

8. Zhang H., Bhat V.V., Feng P.X., Contescua C.I., Gallego N.C. Effect of potassium-doping on the microstructure development in polyfurfuryl alcohol-derived activated carbon. Carbon. 2012. 50(14): 5278. https://doi.org/10.1016/j.carbon.2012.07.012

9. Zhu Y., Murali S., Stoller M.D., Ganesh K.J., Cai W., Ferreira P.J., Pirkle A. Carbon-based supercapacitors produced by activation of graphene. Science. 2011. 332(6037): 1537. https://doi.org/10.1126/science.1200770

10. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Surface area development of coal under thermolysis in the presence of potassium hydroxide. Russ. J. Appl. Chem. 2004. 77(9): 1452. [in Russian]. https://doi.org/10.1007/s11167-005-0049-x

11. Bleda-Martínez M.J., Maciá-Agulló J.A., Lozano-Castelló D., Morallón E., Cazorla-Amorós D., Linares-Solano A. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon. 2005. 43(13): 2677. https://doi.org/10.1016/j.carbon.2005.05.027

12. Amarasekera G., Scarlett M. J., Mainwaring D.E. Development of microporosity in carbons derived from alkali digested coal. Carbon. 1998. 36(7–8): 1071. https://doi.org/10.1016/S0008-6223(98)00079-7

13. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Preparation of nanoporous adsorbents from brown coal using alkali activation and thermal shock. Him. Fiz. Tehnol. Poverhni. 2012. 3(2): 133.

14. Saranchuk V.I., Butuzova L.F., Minkova V.N. Thermochemical destruction of brown coals. (Kyiv: Naykova Dumka, 1993). [in Russian].

15. Li M., Zeng F., Chang H., Xu B., Wang W. Aggregate structure evolution of low-rank coals during pyrolysis by in situ X-ray diffraction. Coal Geology. 2013. 116-117: 262. https://doi.org/10.1016/j.coal.2013.07.008

16. Dun W., Guijian L., Ruoyu S., Xiang F. Investigation of structural characteristics of thermally metamorphosed coal by FTIR spectroscopy and X-ray diffraction. Energy Fuels. 2013. 27(10): 5823. https://doi.org/10.1021/ef401276h

17. Vishnevsriy V.Yu., Kucherenko V.A. Supermolecular structure of activated acrbons obtained bu alkali activation of different rank coals. Voprosy himii I himicheskoi tehnologii. 2014. 5-6(98): 4. [in Russian].

18. Wertz J.E., Bolton J.R. Electron Spin Resonance. Elementary theory and practical applications. (N.-Y.: McGraw-Hill Book Company, 1972).

19. Saranchuk V.I., Ruschev D., Semenenko V.K. Oxidation and ignition of solid fuel. (Kyiv: Naykova Dumka, 1994). [in Russian].

20. Lazarov L., Angelova G. Structure and reactions of coals. (Sofia: Publ. of Bulgaria Academy of Sciences, 1990). [in Russian].

21. Bellamy L.J. The infrared spectra of complex molecules. (London: Chapman and Hall Ltd, third edition, 1975). https://doi.org/10.1007/978-94-011-6017-9

22. Orlov D.S., Osipova N.N. Infrared spectra of soils and soil components. (Moscow: Publ. of Moscow University, 1988). [in Russian].

23. Nesmeyanov A.N., Nesmeyanov N.A. Bases of inorganic chemistry. (Moscow: Chemistry, 1974). [in Russian].

24. Clar E. Polycyclic Hydrocarbons. (New York: Academic Press, 1964).

25. Tamarkina Yu.V., Bovan L.A., Kucherenko V.A. Humic acids formation under thermolysis of brown coal with potassium hydroxide. Voprosy himii I himicheskoi tehnologii. 2008. 2: 112. [in Russian].

26. Tamarkina Yu.V., Kucherenko V.A., Shendrik T.G. Alkali activation af coals and carbon materials. Solid Fuel Chemistry. 2014. 48(4): 251. https://doi.org/10.3103/S0361521914040119

27. Yamashita Y., Ouchi K. Influence of alkali on the carbonization process – II. Carbonization of various coals and asphalt with NaOH. Carbon. 1982. 20(1): 47. https://doi.org/10.1016/0008-6223(82)90073-2

28. Lu C., Xu S., Wang M., Liu Ch. Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke. Carbon. 2007. 45(1): 206. https://doi.org/10.1016/j.carbon.2006.10.003




DOI: https://doi.org/10.15407/hftp08.02.133

Copyright (©) 2017 V. O. Kucherenko, Yu. V. Tamarkina, G. F. Rayenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.