Chemistry, Physics and Technology of Surface, 2017, 8 (2), 165-174.

Selective dehydration of ethyl lactate into ethyl acrylate over NaY-faujasite



DOI: https://doi.org/10.15407/hftp08.02.165

A. M. Varvarin, A. M. Mylin, V. V. Brei

Abstract


Dehydration of lactic acid and its esters is a promising way for obtaining acrylate monomers. The transformation of 10 % ethyl lactate solution in ethanol into ethyl acrylate over NaY, NaX, NaA and L zeolites has been studied. It has been shown that NaY-faujasite is the most stable catalyst, which provides 100 % conversion of ethyl lactate with 80–90 % selectivity towards ethyl acrylate at 350 °С and 0.1 MPa under LHSV= 3.4 h–1 for 3 h. It has been found that use of СО2 as carrier-gas and carrying out the reaction in ethanol steam allows prolonging time of stable work of the catalyst. Possible schemes of ethyl lactate transformations are discussed.

Keywords


ethyl lactate; ethyl acrylate; faujasite; zeolite catalysis

Full Text:

PDF (Українська)

References


1. Ohara T., Sato T., Shimizu N., Prescher G., Schwind H., Weiberg O., Marten K., Greim H. Acrylic acid and derivatives. Ulmann's encyclopedia of industrial chemistry. (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012).

2. Plate N.A., Slivinskii E.V. Fundamentals of chemistry and technology of monomers. (Moscow: Nauka, 2002). [in Russian].

3.http://www.apic2015.com/contents/downloads/2-3/4_APIC_2015_Nexant_Acrylic_Acid.pdf

4. Datta R., Henry M. Lactic acid: recent advances in products, processes and technologies – a review. J. Chem. Technol. Biotechnol. 2006. 81(7): 1119.  https://doi.org/10.1002/jctb.1486

5. Corma A., Iborra S., Velty A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007. 107(6): 2411.  https://doi.org/10.1021/cr050989d

6. Bozell J.J., Petersen G.R. Technology development for the production of biobased products from biorefinery carbohydrates – the US Department of Energy's "Top 10" revisited. Creen Chem. 2010. 12(4): 539.

8. Patent US 2859240. Holmen R.E. Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates. 1958.

9. Wang H., Yu D., Sun P., Yan J., Wang Y., Huang Y. Rare earth metal modified NaY: structure and catalytic performance for lactic acid dehydration to acrylic acid. Catal. Commun. 2008. 9(9): 1799.  https://doi.org/10.1016/j.catcom.2008.01.023

10. Sun P., Yu D., Fu K., Gu M., Wang Y., Huang H., Ying H. Potassium modified NaY: A selective and durable catalyst for dehydration of lactic acid to acrylic acid. Catal. Commun. 2009. 10(9): 1345.  https://doi.org/10.1016/j.catcom.2009.02.019

11. Zhang J., Zhao Y., Pan M., Feng X., Ji W., Au C.-T. Efficient acrylic acid production through bio lactic acid dehydration over NaY zeolite modified by alkali phosphates. ACS Catal. 2011. 1(1): 32.  https://doi.org/10.1021/cs100047p

12. Sun P., Yu D., Tang Z., Li H., Huang H. NaY zeolites catalyze dehydration of lactic acid to acrylic acid: studies on the effects of anions in potassium salts. Ind. Eng. Chem. Res. 2010. 49(19): 9082.  https://doi.org/10.1021/ie101093x

13. Zhang Z., Qu Y., Wang S., Wang J. Catalytic performance and characterization of silica supported sodium phosphates for the dehydration of methyl lactate to methyl acrylate and acrylic acid. Ind. Eng. Chem. Res. 2009. 48(20): 9083. https://doi.org/10.1021/ie900065a

14. Blanco E., Lorentz C., Delichere P., Burel L., Vrinat M., Millet J.M.M., Loridant S. Dehydration of ethyl lactate over alkaline earth phosphates: performances, effect of water on reaction pathways and active sites. Appl. Catal. B. 2016. 180: 596.  https://doi.org/10.1016/j.apcatb.2015.07.005

15. Mylin A.M., Brei V.V. Selective conversion glycerol in ethanol solution into ethyl lactate over CeO2/Al2O3 catalyst. Ukr. Chem. J. 2016. 82(2): 79. [in Ukrainian].

16. Data base JCPDS-ICDD PDF-2. (2002).

17. Patent US 3216789. Breck D.W., Acara N.A. Crystalline zeolite L. 1965.

18. Krylov O.V. Heterogeneous Catalysis: Textbook for high schools. (Moscow: IKC «Akademkniga», 2004). [in Russian].

19. Lauron-Pernot H., Luck F., Popa J.M. Methylbutynol: a new and simple diagnostic tool for acidic and basic sites of solids. Appl. Catal. 1991. 78(2): 213.  https://doi.org/10.1016/0166-9834(91)80107-8

20. Neniţescu K.D. Chimie organică. Volumul II. (Bucureşti: Editura technica, 1963).

21. Zhang J., Lin J., Cen P. Catalytic dehydration of lactic acid to acrylic acid over sulfate catalysts. Can. J. Chem. Eng. 2008. 86(6): 1047.  https://doi.org/10.1002/cjce.20115

22. Cheng Wu-C., Habib E.T., Rajagopalan K., Roberie T.G., Wormsbecher R.F., Ziebarth M.S. Fluid catalytic cracking. Handbook of heterogeneous catalysis. V. 1. (Weinheim: Wiley-VCH, 2010).




DOI: https://doi.org/10.15407/hftp08.02.165

Copyright (©) 2017 A. M. Varvarin, A. M. Mylin, V. V. Brei

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.