Chemistry, Physics and Technology of Surface, 2017, 8 (2), 194-202.

Synthesis, structure and magnetic properties of nanoparticles of (Fe1-xNix)Fe2O4 solid solutions



DOI: https://doi.org/10.15407/hftp08.02.194

P. P. Gorbyk, I. V. Dubrovin, M. V. Abramov

Abstract


A method of synthesis of single-domain nanoparticles of (Fe1-xNix)Fe2O4 solid solutions of oxide ferrimagnetics (where х = 0÷1) has been developed. To suppress coagulation of particles during their synthesis, we used sodium chloride as an indifferent dispersant. After washing, the precipitate was recrystallized at 373 K for the time required for forming particles of a certain size. Then the precipitate was washed in acetone once more and kept in ethyl alcohol.

The synthesized products are characterized by X-ray diffraction. Magnetic moment hysteresis loops were measured with use of a laboratory vibrating magnetometer at the room temperature. Demagnetized nanoparticles of (Fe1-xNix)Fe2O4 solid solutions were used as specimens. To suppress interparticle interactions, the nanoparticles were distributed in paraffin matrices. Materials with the known value of saturation magnetization (Ms) were used as the reference specimen: the tested specimen of nickel and the Fe3O4 (98 %) nanoparticles fabricated by "Nanostructured & Amorphous Materials Inc.", USA. The dependences of saturation magnetization and coercive force on nickel content have been studied. The synthesized material may be applied in micro- and optoelectronics, electrical engineering, biomedicine and other fields.


Keywords


synthesis; structure; magnetic characteristics; nanoparticles; morphology; electrical engineering; biomedicine

Full Text:

PDF (Українська)

References


1. Smit J., Wijn H.P. Ferrites. (Moscow: IL, 1962). [in Russian].

2. Kikoin I.K. Tables of physical quantities. Handbook edited. (Moscow: Atomisdat, 1976). [in Russian].

3. Chen D.-H., He X.-R. Synthesis of Nickel Ferrite Nanoparticles by Sol-Gel Method. Mater. Res. Bull. 2001. 36(7–8):1369.  https://doi.org/10.1016/S0025-5408(01)00620-1

4. Son S., Taheri M., Carpenter E., Harris V.G., McHenry M.E. Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch. J. Appl. Phys. 91(10):7589.  https://doi.org/10.1063/1.1452705

5. Chkoundali, S. Ammar S., Jouini N., Fiévet F., Molinié P., Danot M., Villain F., J.- Grenèche M. Nickel ferrite nanoparticles: elaboration in polyol medium via hydrolysis and magnetic properties. J. Phys.: Condens. Matter. 2004. 16(24): 4357.  https://doi.org/10.1088/0953-8984/16/24/017

6. Shliomis M.I. Magnetic fluids. Advances in Physical Sciences. 1974. 112(3): 427.

7. Mathew D.S., Juang R.-Sh. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 2007. 129(1–3): 51.  https://doi.org/10.1016/j.cej.2006.11.001

8. Vervey E.J.W. Electronic Conduction of Magnetite (Fe3O4) and its Transition Point at Low Temperatures. Nature. 1939. 144(3642): 327.  https://doi.org/10.1038/144327b0

9. Medrano C., Schlenker M., Baruchel J., Espeso J., Miyamoto Y.C. Domains in the low-temperature phase of magnetite from synchrotron-radiation x-ray topographs. Phys. Rev. B. 1999. 59(2): 1185.  https://doi.org/10.1103/PhysRevB.59.1185

10. Sitidze Yu., Sato Kh. Ferrity [Ferrites]. (Moskow: Mir. 1964).

11. Frenkel J., Doefman J. Spontaneous and Induced Magnetisation in Ferromagnetic Bodies. Nature. 1930. 126: 274.  https://doi.org/10.1038/126274a0

12. Kittel Ch. Theory of the Structure of Ferromagnetic Domains in Films and Small Particles. Phys. Rev. 1946. 70(11–12): 965.  https://doi.org/10.1103/PhysRev.70.965

13. Neel L. Compt. Rend. 1947. 224: 1488.

14. Stoner E.C., Wohlfarth E.P. A Mechanism of Magnetic Hysteresis in Heterogenous Alloys. Phil. Trans. Roy. Soc. 1948. 240(826): 599.  https://doi.org/10.1098/rsta.1948.0007

15. Kondorskii E.I. The nature of the high coercivity of ferromagnetic fine and the theory of a single-domain structure. Math. USSR Academy of Sciences. Physics.1952. XVI(4):398. [in Russian].

16. Brown W.F., Jr. Criterion for Uniform Micromagnetization. Phys. Rev. 1957. 105: 1479.  https://doi.org/10.1103/PhysRev.105.1479

17. Vonsovskii S.V. Magnetizm. (Moscow: Nauka, 1971). [in Russian].

18. Petrov A.E., Kostygov A.N. Petinov V.I. Magnetic properties of small spherical iron particles in 4,2-300K. Solid State Physics. 1973. 15(10): 2927. [in Russian].

19. Abramov M.V. Magnetic fluid based on doxorubicin for cancer therapy applications. Surface. 2014. 6(21): 241. [in Russian].

20. Gorbik P.P., Mishchenko V.N., Abramov N.V., Troshchenko Y.N., Usov D.G. The magnetic properties of Fe3O4 nanoparticles obtained by chemical condensation and solid phase synthesis. Collection Chemistry, Physics and Technology of Surface. 2010. 16: 165. [in Russian].

21. Nepiyko S.A. Physical properties of small metallic particles. (Kiev: Naukova Dumka, 1975). [in Russian].

22. Gubin S.P., Koksharov Yu.A., Chomutov G.B., Jurkov G.Y. Magnetic nanoparticles: preparation methods, structure and properties. Russ. Chem. Rev. 2005.74(4):539. [in Russian].

23. Chen D.-X., Sun N., Gu H.-C. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging. J. App. Phys. 2009. 106: 63906.  https://doi.org/10.1063/1.3211307

24. Araújo-Neto R.P., Silva-Freitas E.L., Carvalho J.F., Pontes T.R.F., Silva K.L., Damasceno I.H.M., Egito E.S.T., Dantas A.L., Morales M.A., Carriço A.S. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J. Magn. Magn. Mater. 2014. 364: 72.  https://doi.org/10.1016/j.jmmm.2014.04.001

25. Folen V.J. Crystalline Electric Fields in Spinel-Type Crystals. J. Appl. Phys. 1962. 33(3): 1084.  https://doi.org/10.1063/1.1728610

26. Frei E.H., Shtrikman S., Treves D. Critical Size and Nucleation Field of Ideal Ferromagnetic Particles. Phys. Rev. 1957. 106: 446.  https://doi.org/10.1103/PhysRev.106.446 

27. Dillon J.F., Geschwind S., Jaccarino V. Ferromagnetic Resonance in Single Crystals of Manganese Ferrite. J. Appl. Phys. 1955. 26: 750.




DOI: https://doi.org/10.15407/hftp08.02.194

Copyright (©) 2017 P. P. Gorbyk, I. V. Dubrovin, M. V. Abramov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.