Chemistry, Physics and Technology of Surface, 2017, 8 (3), 250-270.

Synthesis and sorption properties of functionalized MCM-41 silicas



DOI: https://doi.org/10.15407/hftp08.03.250

N. V. Roik, L. A. Belyakova, I. M. Trofymchuk, M. O. Dziazko

Abstract


Synthesis of mesoporous silicas of MCM-41 type with chemically immobilized β cyclodextrin-containing groups was realized by template sol-gel method in the presence of functional silane. The influence of reaction mixture composition used at β cyclodextrin-silane synthesis (molar ratio β cyclodextrin:3 aminopropyltriethoxysilane: 1,1'-carbonyldiimidazole) on chemical structure and arrangement of mesopores of resulting organosilica materials was proved. The enhancement of ethoxysilyl constituent in β cyclodextrin-silane used in sol-gel condensation leads to the formation of silicas with higher content of chemically immobilizedβ cyclodextrin-containing groups and less arranged mesopores. Structure of obtained materials was determined using chemical analysis, infrared spectroscopy, low-temperature nitrogen adsorption-desorption, X-ray diffraction, and transmission electron microscopy. With the aim to elucidate the contribution of β cyclodextrin-containing groups in the removal of azo dyes, sorption of methyl red and alizarin yellow on synthesized silicas was studied from phosphate buffer solutions in dependence of contact duration, equilibrium concentration, and pH of medium. The results were analyzed using Langmuir, Freundlich and Redlich-Peterson equations. It has been found that equilibrium sorption of methyl red and alizarin yellow on parent silica and silica with chemically immobilized β cyclodextrin containing groups is described by the Redlich-Peterson model.

Keywords


mesoporous silica MCM-41; β cyclodextrin; surface functionalization; methyl red; alizarin yellow; sorption

Full Text:

PDF (Українська)

References


1. Zaharia C., Suteu D. Textile organic dyes – characteristics, polluting effects and separation/elimination procedures from industrial effluents. In: Organic pollutants ten Years after the Stockholm convention - environmental and analytical update. (Croatia: InTech, 2012).

2. Ratna, Padhi B.S. Pollution due to synthetic dyes toxicity and carcinogenicity studies and remediation. Int. J. Envir. Sci. 2012. 3(3): 940.

3. Panic V.V., Seslija S.I., Nesic A.R., Velickovic S.J. Adsorption of azo dyes on polymer materials. Hemijska Industrija. 2013. 67(6): 881. https://doi.org/10.2298/HEMIND121203020P

4. Shukla N.B., Rattan S., Madras G. Swelling and dye-adsorption characteristics of an amphoteric superabsorbent polymer. Ind. Eng. Chem. Res. 2012. 51(46): 14941. https://doi.org/10.1021/ie301839z

5. Ghemati Dj., Aliouche Dj. Dye adsorption behavior of polyvinyl alcohol/glutaraldehyde/β-cyclodextrin polymer membranes. J. Appl. Spectrosc. 2014. 81(2): 257. https://doi.org/10.1007/s10812-014-9919-4

6. Santhi T., Manonmani S., Smitha T. Removal of methyl red from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption. Chem. Eng. Res. Bull. 2010. 14(1): 11. https://doi.org/10.3329/cerb.v14i1.3767

7. Gerashchenko I.I., Voitko I.I., Vasilieva A.V. Adsorption of differently charged dyes by experimental samples of carbon sorbents. Pharmaceutical Journal. 2012. 2: 82. [in Ukrainian].

8. Derylo-Marczewska A., Marczewski A., Winter Sz. Adsorption of dyes on mesoporous carbons. Annales UMCS, Chemia, The Journal of Maria Curie-Sklodowska University. 2008. 63(23): 287.

9. Krysztafkiewicz A., Binkowski S., Jesionowski T. Adsorption of dyes on a silica surface. Appl. Surf. Sci. 2002. 199: 31. https://doi.org/10.1016/S0169-4332(02)00248-9

10. Buvaneswari N., Kannan C. Adsorption of cationic and anionic organic dyes from aqueous solution using silica. J. Environ. Sci. Eng. 2010. 52(4): 361.

11. Wu Y., Zhang M., Zhao H., Yang S., Arkin A. Functionalized mesoporous silica material and anionic dye adsorption: MCM-41 incorporated with amine groups for competitive adsorption of Acid Fuchsine and Acid Orange II. RSC Adv. 2014. 4: 61256. https://doi.org/10.1039/C4RA11737A

12. Lehn J.M. Cryptates: inclusion complexes of macropolyciclic receptor molecules. Pure Appl. Chem. 1978. 50(9–10): 871. https://doi.org/10.1351/pac197850090871

13. Pedersen C.J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967. 89(10): 2495. https://doi.org/10.1021/ja00986a052

14. Hegeson R.C., Timko J.M., Cram D.J. Structural requirements for cyclic ethers to complex and lipophilize metal cations or alpha amino acids. J. Am. Chem. Soc. 1973. 95(9): 3023. https://doi.org/10.1021/ja00790a053

15. Lehn J. M. Supramolecular chemistry: concepts and perspectives. (Weinheim: VCH Verlagsgesellschaft, 1995). https://doi.org/10.1002/3527607439

16. Steed J.W., Atwood J.L. Supramolecular chemistry. (New York: Wiley, 2009). https://doi.org/10.1002/9780470740880

17. Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998. 98(5): 1743. https://doi.org/10.1021/cr970022c

18. Bibby A., Mercier L. Adsorption and separation of water soluble aromatic molecules by cyclodextrin functionalized mesoporous silica. Green Chem. 2003. 5(1): 15. https://doi.org/10.1039/b209251b

19. Hug R., Marcier L. Incorporation of cyclodextrin into mesostructured silica. Chem. Mater. 2001. 13(12): 4512. https://doi.org/10.1021/cm010171i

20. Liu C., Naismith N., Economy J. Advanced mesoporous organosilica materials containing microporous β cyclodextrin for the removal of humic acid from water. J. Chromatogr. A. 2004. 1036(2): 113. https://doi.org/10.1016/j.chroma.2004.02.076

21. Phan T.N.T., Bacquet M., Laureyns J., Morcellet M. New silica gels functionalized with 2 hydroxy 3 methacryloyloxypropyl β cyclodextrin using coating or grafting methods. Phys. Chem. Chem. Phys. 1999. 1: 5189. https://doi.org/10.1039/a905713g

22. Roik N.V., Belyakova L.A. Interaction of supramolecular centers of silica surface with aromatic amino acids. J. Colloid Interface Sci. 2011. 362(1): 172. https://doi.org/10.1016/j.jcis.2011.05.085

23. Shvets O., Belyakova L. Synthesis, characterization and sorption properties of silica modified with some derivatives of β-cyclodextrin. J. Hazard. Mat. 2015. 283(11): 643. https://doi.org/10.1016/j.jhazmat.2014.10.012

24. Chen L., Zhang L. F., Ching C. B., Ng S. C. Synthesis and chromatographic properties of a novel chiral stationary phase derived from heptakis(6 azido 6 deoxy 2,3 di O phenylcarbamoylated) β cyclodextrin immobilized onto aminofunctionalized silica gel via multiple urea linkages. J. Chromatogr. A. 2002. 950(1–2): 65. https://doi.org/10.1016/S0021-9673(02)00043-2

25. Liu M., Da S. L., Feng Y. Q., Li L. S. Study on the preparation method and performance of a new β cyclodextrin bonded silica stationary phase for liquid chromatography. Anal. Chim. Acta. 2005. 533(1): 89. https://doi.org/10.1016/j.aca.2004.10.079

26. Fujimura K., Ueda T., Ando T. Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. J. Am. Chem. Soc. 1983. 55(3): 446. https://doi.org/10.1021/ac00254a009

27. Gong Y., Lee H.K. Application of cyclam capped β cyclodextrin bonded silica particles as a chiral stationary phase in capillary electrochromatography for enantiomeric separation. Anal. Chem. 2003. 75(6): 1348. https://doi.org/10.1021/ac0204909

28. Feng Y.–Q., Xie M. J., Da S. L. Preparation and characterization of an L tyrosine derivatized β cyclodextrin bonded silica stationary phase for liquid chromatography. Anal. Chem. Acta. 2000. 403(1–2): 187. https://doi.org/10.1016/S0003-2670(99)00645-5

29. Zhang L. F., Wong Y. C., Chen L., Ching C.B., Ng S. C. A facile immobilization approach for perfunctionalised cyclodextrin onto silica via the Staudinger reaction. Tetrahedron Lett. 1999. 40(9): 1815. https://doi.org/10.1016/S0040-4039(99)00017-9

30. Kawaguchi Y., Tanaka M., Nakae M., Funazo K., Shono T. Chemically bonded cyclodextrin stationary phases for liquid chromatographic separation of aromatic compounds. J. Am. Chem. Soc. 1983. 55(12): 1852. https://doi.org/10.1021/ac00262a005

31. Lai X., Ng S. C. Mono(6A N allylamino 6A deoxy)perphenylcarbamoylated β cyclodextrin: synthesis and application as a chiral stationary phase for HPLC. Tetrahedron Lett. 2003. 44(13): 2657. https://doi.org/10.1016/S0040-4039(03)00347-2

32. Liu M., Li L. S., Da S. L., Feng Y. Q. High performance liquid chromatography with cyclodextrin and calixarene macrocycle bonded silica stationary phases for separation of steroids. Talanta. 2005. 66(2): 479. https://doi.org/10.1016/j.talanta.2004.09.022

33. Bai Z. W., Lai X. H., Chen L., Ching C. B., Ng S. C. Arylcarbamoylated allylcarbamido β cyclodextrin: synthesis and immobilization on nonfunctionalized silica gel as a chiral stationary phase. Tetrahedron Lett. 2004. 45(39): 7323. https://doi.org/10.1016/j.tetlet.2004.08.007

34. Palaniappan A., Li X., Tay F.E.H., Li J., Su X. Cyclodextrin functionalized mesoporous silica films on quarts crystal microbalance for enhanced gas sensing. Sens. Actuators, A. 2006. 119(1): 220. https://doi.org/10.1016/j.snb.2005.12.015

35. Phan T.N.T., Bacquet M., Morcellet M. Synthesis and characterization of silica gels functionalized with monochlorotriazinyl β cyclodextrin and their sorption capacities towards organic compounds. J. Inclusion Phenom. Phen. Macrocyc. Chem. 2000. 38(1–4): 345. https://doi.org/10.1023/A:1008169111023

36. Xu X., Liu Z., Zhang X., Duan S., Xu S., Zhou C. β Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers. Electrochim. Acta. 2011. 58: 142. https://doi.org/10.1016/j.electacta.2011.09.015

37. Wang C., Li Z., Cao D., Zhao Y. L., Gaines J.W., Bozdemir O.A., Ambrogio M.W., Frasconi M., Botros Y.Y., Zink J.I., Stoddart J.F. Stimulated release of size-selected cargos in succession from mesoporous silica nanoparticles. Angew. Chem. Int. Ed. 2012. 51(22): 5460. https://doi.org/10.1002/anie.201107960

38. Nietzold C., Dietrich P.M., Lippitz A., Panne U., Unger W.E.S. Cyclodextrin–ferrocene host–guest omplexes on silicon oxide surfaces. Surf. Inter. Anal.2016. 48(7): 606–610. https://doi.org/10.1002/sia.5958

39. Shen H.-M., Zhu G.-Y., Yu W.-B., Wu H.-K., Ji H.-B., Shi H.-X., Zheng Y.-F., She Y.-B. Surface immobilization of β-cyclodextrin on hybrid silica and its fast-adsorption performance to p-nitrophenol from a queous phase. RSC Advances. 2015. 5: 84410. https://doi.org/10.1039/C5RA15592D

40. Korenman I.M. Photometric analysis. Methods for the determination of organic compounds. (Moscow: Chemistry, 1970).

41. Belyakova L.A., Besarab L.N., Roik N.V., Lyashenko D.Yu., Vlasova N.N., Golovkova L.P., Chuiko A.A. Designing of the centers for adsorption of bile acids on a silica surface. J. Colloid Interface Sci. 2006. 294(1): 11. https://doi.org/10.1016/j.jcis.2005.06.081

42. Staab H.A. Syntheses using heterocyclic amides (azolides). Angew. Chem. Int. Ed. Engl. 1962. 1(7): 351. https://doi.org/10.1002/anie.196203511

43. Katz A., Davis M.E. Molecular imprinting of bulk microporous silica. Nature. 2000. 403: 286. https://doi.org/10.1038/35002032

44. Fryxell G.E., Wu H., Lin Y., Shaw W.J., Birnbaum J.C., Linehan J.C., Nie Z., Kemner K., Kelly S. Lanthanide selective sorbents: self assembled monolayers on mesoporous supports. J. Mater. Chem. 2004. 14: 3356. https://doi.org/10.1039/b408181a

45. Defreese J.L., Katz A. Shape selective covalent binding in bulk, microporous imprinted silica. Micropor. Mesopor. Mater. 2006. 89(1–3): 25. https://doi.org/10.1016/j.micromeso.2005.09.023

46. Roik N.V., Belyakova L.A., Dzyazko M.A. Sorption of aromatic amino acids on dispersed silica with chemically grafted β–cyclodextrin. Him. Fiz. Tehnol. Poverhni. 2011. 2(3): 314. [in Russian].

47. Li J., Zhu K., Shang J., Wang D., Nie Z., Guo R., Liu C., Wang Z., Li X., Liu J. Fluorescent functionalized mesoporous silica for radioactive material extraction. Sep. Sci. Technol. 2012. 47(10): 1507. https://doi.org/10.1080/01496395.2012.655833

48. Grun M., Unger K.K., Matsumoto A., Tsutsumi K. Ordered mesoporous MCM-41 adsorbents: novel routes in synthesis, product characterization and specification. In: Characterisation of Porous Solids IV. (Great Britain: Royal Society of Chemistry, 1997).

49. Eguchi M, Du Y. Z., Taira S., Kodaka M. Functional nanoparticle based on β-cyclodextrin. NanoBiotechnol. 2005. 1: 165. https://doi.org/10.1385/NBT:1:2:165

50. Mondjinou Y.A., McCauliff L.A., Kulkarni A., Paul L., Hyun S.-H., Zhang Z., Wu Z., Wirth M., Storch J., Thompson D.H. Synthesis of 2-hydroxypropyl-β-cyclodextrin/pluronic-based polyrotaxanes via heterogeneous reaction as potential niemann-pick type C therapeutics. Biomacromolecules. 2013. 14(12): 4189. https://doi.org/10.1021/bm400922a

51. Cai K., Li J., Luo Z., Hu Y., Hou Y., Ding X. β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem. Commun. 2011. 47: 7719. https://doi.org/10.1039/c1cc11855b

52. Yano H., Hirayama F., Arima H., Uekama K. Preparation of prednisolone-appended α-, β- and γ-cyclodextrins: Substitution at secondary hydroxyl groups and in vitro hydrolysis behavior. J. Pharm. Sci. 2001. 90(4): 493. https://doi.org/10.1002/1520-6017(200104)90:4<493::AID-JPS1007>3.0.CO;2-W

53. Dittert L.W., Higuchi T. Rates of hydrolysis of carbamate and carbonate esters in alkaline solution. J. Pharm. Sci. 1963. 53(9): 852. https://doi.org/10.1002/jps.2600520908

54. Nakanishi K. Infrared Adsorption Spectroscopy –Practical. (Tokyo: Nankodo Company Ltd., 1962).

55. Unger K.K. Porous Silica — its properties and use as support in column liquid chromatography. (Amsterdam, Oxford, New York: Elsevier Scientific Publishing Co., 1979).

56. Handbook of HPLC – Chromatographic Science Series. V. 78. Ed. by Katz E., Eksteen R., Schoenmakers P., Miller N. (New York: Marcel Dekker Inc., 1998).

57. Sagliano Jr. N., Hartwick R.A., Patterson R.E., Woods B.A., Bass J.L., Miller N.T. Stabilization of reversed phases for liquid chromatography: Application of infrared spectroscopy for the study of bonded-phase stability. J. Chromatogr. A. 1988. 458: 225. https://doi.org/10.1016/S0021-9673(00)90567-3

58. Glajch J.L., Kirkland J.J., Köhler J. Effect of column degradation on the reversed-phase high-performance liquid chromatographic separation of peptides and proteins. J. Chromatogr. A. 1987. 384: 81. https://doi.org/10.1016/S0021-9673(01)94661-8

59. Kirkland J.J., Glajch J.L., Farlee R.D. Synthesis and characterization of highly stable bonded phases for high-performance liquid chromatography column packing. Anal. Chem. 1989. 61(1): 2. https://doi.org/10.1021/ac00176a003

60. Tawarah K.M., Abu-Shamleh H.M. A spectrophotometric study of the acid-base equilibria of methyl red in aqueous solutions. Dyes Pigm. 1991. 17(3): 203. https://doi.org/10.1016/0143-7208(91)80027-7

61. Kolthoff I.M. Acid-base indicators. (New York: The Macmillan Company, 1953).

62. Tobey S.W. The acid dissociation constant of methyl red. J. Chem. Educ. 1958. 35(10): 514. https://doi.org/10.1021/ed035p514

63. Seleim M.M., Abu-Bakr M.S., Hashem E.Y., El-Zohry A.M. Simultaneous determination of aluminum(III) and iron(III) by first-derivative spectrophotometry in alloys. J. Appl. Spectrosc. 2009. 76(4): 554. https://doi.org/10.1007/s10812-009-9224-9




DOI: https://doi.org/10.15407/hftp08.03.250

Copyright (©) 2017 N. V. Roik, L. A. Belyakova, I. M. Trofymchuk, M. O. Dziazko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.