Chemistry, Physics and Technology of Surface, 2017, 8 (3), 322-332.

Effective minority carrier lifetime and distribution of steady-state excess minority carriers in macroporous silicon



DOI: https://doi.org/10.15407/hftp08.03.322

V. F. Onyshchenko, L. A. Karachevtseva

Abstract


We have obtained a simple expression that determines the effective minority carrier lifetime in macroporous silicon with periodic arrangement of infinitely long macropores as a function of bulk lifetime, surface recombination velocity of minority carriers, pore radius and the distance between the centers of macropores. This expression can be applied also to macroporous silicon with randomly distributed pores by replacing the pore radius and the distance between the centers of macropores with their average values. The distribution of steady-state excess minority carriers in macroporous silicon is calculated for the analytical model proposed by us. The calculation is made for the case when both the outer surface of macroporous silicon and the bottom of pores are illuminated with light. We observed two peaks of the distribution of steady-state excess minority carriers in macroporous silicon near the surfaces illuminated with light of wavelength 0.95 m. At the same time, if macroporous silicon was illuminated with light with the wavelength of 1.05 μm, we observed only one maximum in the distribution function of the excess minority carriers, in spite of the fact that the pore bottom was also illuminated with light. It is shown that the distribution of excess minority carriers in macroporous silicon with through pores is similar to the distribution in single crystal silicon. But in this case, the effective lifetime of minority charge carriers in the effective medium of macroporous silicon, which includes silicon and the surface of pores, corresponds to the bulk minority-carrier lifetime in monocrystalline silicon.

Keywords


effective minority carrier lifetime; excess minority carrier distribution; macroporous silicon

Full Text:

PDF

References


1. Birner A., Wehrspohn R.B., Gösele U.M., Busch K. Silicon-based photonic crystals. Adv. Mater. 2001. 13(6): 377. https://doi.org/10.1002/1521-4095(200103)13:6<377::AID-ADMA377>3.0.CO;2-X

2. Karachevtseva L.A. Two-dimensional photonic crystals as perspective materials of modern nanoelectronics. Semiconductor Physics Quantum Electronics & Optoelectronics. 2004. 7(4): 430.

3. Glushko A., Karachevtseva L. Photonic band structure of oxidized macroporous silicon. Opto-Electron. Rev. 2006. 14(3): 201. https://doi.org/10.2478/s11772-006-0026-9

4. Glushko A., Karachevtseva L. PBG propertiesof three-component 2D photoniccrystals. Photonics and Nanostructures. 2006. 4(3): 141. https://doi.org/10.1016/j.photonics.2006.02.003

5. Onyshchenko V.F., Karachevtseva L.A. Conductivity and photoconductivity of two-dimensionalmacroporous silicon structures. Ukr. J. Phys. 2013. 58(9): 846. https://doi.org/10.15407/ujpe58.09.0846

6. Karachevtseva L.A., Kartel M.T., Konin K.P., Lytvynenko O.O., Onyshchenko V.F., Bo Wang Light emitting "polymer-nanoparticles" coatings on macroporous silicon substrates. Him. Fiz. Tehnol. Poverhni. 2017. 8(1): 18. https://doi.org/10.15407/hftp08.01.018

7. Karachevtseva L.A., Kartel M.T., Lytvynenko O.O., Onyshchenko V.F., Parshyn K.A., Stronska O.J. Polymer-nanoparticle coatings on macroporous silicon matrix. Adv. Mater. Lett. 2017. 8(4): 336. https://doi.org/10.5185/amlett.2017.1412

8. Karachevtseva L., Onyshchenko V., Sachenko A. Photocarrier transport in 2Dmacroporous silicon structures. Opto-Electron. Rev. 2010. 18(4): 394. https://doi.org/10.2478/s11772-010-0042-7

9. Onyshchenko V.F., Sachenko A.V., Karachevtseva L.A. Anomalous-sign photo-emf in macroporous silicon at photon energies comparable to that of indirect band-to-band transition. Ukr. J. Phys. 2009. 54(12): 1212.

10. Karachevtseva L., Karas M., Onishchenko V., Sizov F. Surface polaritons in 2D macroporous silicon structures. Int. J. Nanotechnology. 2006. 3(1): 76. https://doi.org/10.1504/IJNT.2006.008722

11. Karachevtseva L.A., Onyshchenko V.F., Sachenko A.V. Kinetics of photoconductivity inmacroporous silicon structures. Ukr. J. Phys. 2008. 53(9): 874.

12. Barillaro G., Bruschi P., Pieri F., Strambini L.M. CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys. Status. Sol. A. 2007. 204(5): 1423.

13. Barillaro G., Strambini L.M. An integrated CMOS sensing chip for NO2 detection. Sens. Actuators, B. 2008. 134(2): 585. https://doi.org/10.1016/j.snb.2008.05.044

14. Ernst M., Brendel R., Ferre R. Thin macroporous silicon heterojunction solar cells. Phys. Status Sol. RRL. 2012. 6(5): 187. https://doi.org/10.1002/pssr.201206113

15. Ernst M., Brendel R. Macroporous silicon solar cells with an epitaxial emitter. IEEE Journal of Photovoltaics. 2013. 3(2): 723. https://doi.org/10.1109/JPHOTOV.2013.2247094

16. Ernst M., Brendel R. Lambertian light trapping in thin crystalline macroporous Si layers. Phys. Status. Sol. RRL. 2014.8(3): 235.

17. Brendel R., Ernst M. Macroporous Si as an absorber for thin-film solar cells. Phys. Status. Sol. RRL. 2010. 4(1–2): 40. https://doi.org/10.1002/pssr.200903372

18. Maiolo J.R., Atwater H.A., Lewis N.S. Macroporous silicon as a model for silicon wire array solar cells. J. Phys. Chem. C. 2008. 112(15): 6194. https://doi.org/10.1021/jp711340b

19. Ernst M., Brendel R. Modeling effective carrier lifetimes of passivatedmacroporous silicon layers. Sol. Energy Mater. Sol. Cells. 2011. 95(4): 1197. https://doi.org/10.1016/j.solmat.2011.01.017




DOI: https://doi.org/10.15407/hftp08.03.322

Copyright (©) 2017 V. F. Onyshchenko, L. A. Karachevtseva

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.