Chemistry, Physics and Technology of Surface, 2017, 8 (4), 357-368.

Benzoyl peroxide decomposition on the surface of carbon materials on the base of activated carbon KAU



DOI: https://doi.org/10.15407/hftp08.04.357

D. M. Haliarnyk, E. M. Demianenko, O. M. Bakalinska, T. V. Kulyk, B. B. Palyanytsya, A. G. Grebenyuk, V. S. Kuts, M. T. Kartel

Abstract


Stability of non-aqueous solutions and catalytic reaction of benzoyl peroxide (BP) decomposition by samples of carbon materials (CM) – apricot shell stone activated carbon KAU, its nitrogen- and oxygen-containing (N-KAU, O‑KAU) modified forms, and enzyme catalase have been examined. It has been shown that catalytic activity of CMs, quantitatively estimated by Michaelis constants, is determined by the surface functional groups nature rather than by structural-sorption characteristics. The catalytic activity of nitrogen-containing CM in non-aqueous media is by an order of magnitude higher than that of enzyme catalase. Catalyst capability to decompose benzoyl peroxide decreases in a sequence  N–KAU > catalase > KAU > O-KAU. A comparative analysis of the experimental data with the results of quantum chemical calculations of the bond breaking energy in the BP molecule in different media, electronic structure of model carbon nanoclusters (CNC) and energy parameters of BP decomposition reaction has been carried out. It has been shown that the O-O bond is the weakest in BP molecule in spite of the media polarity. Free radical of BP (С6Н5-СОО, BP) more easily (both kinetically and thermodynamically) interacts with nitrogen-containing graphite-like plane model CNC as compared to pristine and oxygen-containing ones. The thermodynamic and kinetic characteristics of the interaction between BP· radical and CNC surfaces are determined by their electron donor capabilities (ionization potentials).


Keywords


KAU-type activated carbons; benzoyl peroxide; catalytic decomposition; Michaelis constants; reaction mechanism; TPD MS method; quantum chemical calculations; DFT method

Full Text:

PDF

References


1. Fidalgo B. Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review. Chin. J. Catal. 2011. 32(1–2): 207. https://doi.org/10.1016/S1872-2067(10)60166-0

2. Panagiotis T. Carbon as catalyst and support for electrochemical energy conversion. Carbon. 2014. 75: 5. https://doi.org/10.1016/j.carbon.2014.04.005

3. Menendez-Diaz J.A., Martln-Gullon I. Types of carbon adsorbents and their production. Activated carbon surfaces in environmental remediation. (Interface science and technology series, 7/Ed. T. Bandosz. Elsevier, 2006).

4. Shafeeyan M.S., Wan Mohd Ashri Wan Daud, Houshmand A., Shamiri A. A review on surface modification of activated carbon for carbon dioxide adsorption. J. Anal. Appl. Pyrolysis. 2010. 89(2): 143. https://doi.org/10.1016/j.jaap.2010.07.006

5. Bagreev A., Bandosz T. Carbonaceous materials for gas phase desulfurization: role of surface heterogeneity. Am. Chem. Soc., Div. Fuel Chem. 2004. 49(2): 817.

6. Matzner S. Boehm H.P. Influence of nitrogen doping on the adsorption and reduction of nitric oxide by activated carbons. Carbon. 1998. 36(11): 1697. https://doi.org/10.1016/S0008-6223(98)90047-1

7. Sharma S, Pollet B.G. Support materials for PEMFC and DMFC electrocatalysts - a review. J. Power Sources. 2012. 208: 96. https://doi.org/10.1016/j.jpowsour.2012.02.011

8. Stavitskaya S.S., Strelko V.V. Catalytic properties of carbon enterosorbents. Theor. Exp. Chem. 1995. 31(2): 65. https://doi.org/10.1007/BF00529987

9. Lapko V.F., Gerasimyuk I.P., Kuts' V.S., Tarasenko Yu.A. The activation characteristics of the decomposition of H2O2 on palladium-carbon catalysts. Russian J. Phys. Chem. A. 2010. 84(6): 934. https://doi.org/10.1134/S0036024410060087

10. Voitko K., Tóth A., Demianenko E., Dobos G., Berke B., Bakalinska O., Grebenyuk A., Tombácz E., Kuts V., Tarasenko Yu., Kartel M., László K. Catalytic performance of carbon nanotubes in H2O2 decomposition: Experimental and quantum chemical study. J. Colloid Interface Sci. 2015. 437: 283. https://doi.org/10.1016/j.jcis.2014.09.045

11. Kuts V.S., Gerasimyuk I.P., Tarasenko Yu.A. Kinetic and quantum chemical study on the reaction of H2O2 decomposition on Cn, Pdm and Pdm/Cn clusters. Chemistry, Physics and Technology of Surface. Collection book. 2009. 15: 25. [in Russian].

12. Voitko K.V., Demianenko E.M., Bakalinska O.M., Tarasenko Yu.O., Kuts V.S., Kartel M.T. Quantum chemical study on thermodynamic and kinetic characteristics of the interaction between hydroxyl radical and graphite–like planes. Him. Fiz. Technol. Poverhni. 2013. 4(1): 3. [in Ukrainian].

13. Lee M.-Y., Dordick J.S. Enzyme activation for non-aqueous media. Curr. Opin. Biotechnol. 2002. 13(4): 376. https://doi.org/10.1016/S0958-1669(02)00337-3

14. Kriegeret N., Bhatnagar T., Baratt J.C., Baron A.M., de Lima V.M., Mitchell D. Non-Aqueous Biocatalysis in Heterogeneous Solvent Systems. Food Technol. Biotechnol. 2004. 42(4): 279.

15. Dimcheva N., Horozova E. Non-aqueous biocatalysis by catalase immobilized on Ti/silicate. Scientific Papers. 2005. 33(2): 55.

16. Tarkovskaya I.A. Oxidized coal. (Kiev: Naukova dumka, 1981). [in Russian].

17. Zhuravsky S.V., Kartel M.T., Tarasenko Yu.O., Villar-Rodil S., Dobos G., Toth A., Tuscon J., Laszlo K. N containing carbons from styrene-divinylbenzene copolymer by urea treatment. Appl. Surf. Sci. 2012. 258(7): 2410. https://doi.org/10.1016/j.apsusc.2011.10.062

18. Haliarnyk D.M., Bakalinska O.M., Palyanytsya B.B., Kulyk T.V., Kartel M.T. Decomposition of organic peroxides by carbon nanomaterials in non-aqueous media. Surface. Collection book. 2015. 7(22): 253. [in Ukrainian].

19. Keltsev N.V. Fundamentals of adsorption technics. (Moscow: Khimiya, 1984). [in Russian].

20. Klimova V.A. Basic procedures of microanalysis of organic compounds. (Moscow: Khimiya, 1967). [in Russian].

21. Alekseyev V.N. Quantitative analysis. (Moscow: Khimiya, 1972). [in Russian].

22. Boehm H.P. Surface oxides on carbon and their analysis: a critical assessment. Carbon. 2002. 40(2): 145. https://doi.org/10.1016/S0008-6223(01)00165-8

23. Hoffman R.V. p-Nitrobenzenesulfonyl Peroxide. Encyclopedia of Reagents for Organic Synthesis. 2001: 1.

24. Lyalikov Yu.S. Physico-chemical methods of analysis. (Moscow: Khimiya, 1973). [in Russian].

25. Glevatska K.V., Bakalinska O.M., Kartel M.T. Studies, description and comparation of the catalase activity of carbon sorbents of SKN and CAU. Transactions of NaUKMA, Chemical Sciences and Technologies. 2008. 79: 19. [in Ukrainian].

26. Pokrovskiy V.O. Desorption mass-spectrometry: physics, physical chemistry, surface chemistry. News Nat. Acad. Sci. of Ukraine. 2012. 12: 28. [in Ukrainian].

27. Schmidt M.W., Baldridge K.K., Boatz J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

28. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

29. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

30. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759

31. Cossi M., Barone V., Cammi R., Tomasi J. Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 1996. 255(4–6): 327. https://doi.org/10.1016/0009-2614(96)00349-1

32. Jensen F. Introduction to computational chemistry. (New York: Wiley, 2006).

33. Lyarvinets O.S., Choban A.F., Yakovych N.I. Effect of solvents on heterogeneous catalytical decomposition of benzoyl peroxide in presence of vanadium (V) oxide. Naukoviy visnyk of Chernivtsy University. 2012. 606: 58. [in Ukrainian].

34. Hongo T., Hikage S., Sato A. Stability of benzoyl peroxide in methyl alcohol. Dental Mater. J. 2006. 2(25): 298. https://doi.org/10.4012/dmj.25.298

35. Kuzin I.A., Strashko B.K. Preparation and examination of ion-exchange properties of oxidized coal. Zhurn. Prikl. Khimii. 1966. 39(3): 603. [in Russian].

36. Kublanovskiy V.S., Oblovatnaya S.Ya. Catalytic activity of the synthetic nitrogen-containing coals in the reactions of hydrogen peroxide decomposition. Ukr. Khim. Zhurn. 2000. 66(1–2): 18. [in Russian].

37. Strelko V.V., Kuts V.S., Thrower P.A. On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon. 2000. 38(10): 1499. https://doi.org/10.1016/S0008-6223(00)00121-4

38. Strelko V.V., Kartel N.T., Dukhno I.N., Kuts V.S., Clarksonb R.B., Odintsov B.M. Mechanism of reductive oxygen adsorption on active carbons with various surface chemistry. Surf. Sci. 2004. 548(1–3): 281. https://doi.org/10.1016/j.susc.2003.11.012

39. Kopyl S.A., Kuts V.S., Tarasenko Yu.A. Physico-chemical characteristics of the oxygen-containing active coal SKN. Corrosion, materials, protection. 2005. 6: 37. [in Russian].

40. Kuts V.S., Klymenko V.E., Strelko V.V. Cluster models for active coal. In: Selective Sorption and Catalysis on Active Coals and Inorganic Ionites. (Kyiv: Naukova Dumka, 2008). [in Russian].

41. Kuts V.S., Kopyl S.A., Tarasenko Yu.A. Cluster models for surfaces of oxidized coal and their electrochemical properties. Chemistry, Physics and Technology of Surface. Collection book. 2008). 14: 156. [in Russian].




DOI: https://doi.org/10.15407/hftp08.04.357

Copyright (©) 2017 D. M. Haliarnyk, E. M. Demianenko, O. M. Bakalinska, T. V. Kulyk, B. B. Palyanytsya, A. G. Grebenyuk, V. S. Kuts, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.