Chemistry, Physics and Technology of Surface, 2017, 8 (4), 369-375.

Nonporous platinum doped titania films: synthesis, optical and photocatalytic characteristics



DOI: https://doi.org/10.15407/hftp08.04.369

D. V. Ihnatiuk, N. P. Smirnova, O. P. Linnik

Abstract


The simple and fast route of the synthesis of platinum ions doped titania thin films is designed where platinum(II) acetylacetonate is used as a perspective doping agent due to the possibility of platinum incorporation in the form of the different valence states. Additionally, the multilayered films showing the varied properties are obtained. The increase in Pt content as well as the number of layers leads to the higher absorbance and the band edge shift to the red part of the spectrum. The indirect electronic transition is suggested and the calculated band gap values are depended on the film compositions as well as the number of layers. The significant decrease in the band gap value of titania is noted for 0.5 % Pt/TiO2 films. Pure titania and doped titania films contain anatase phase only with the average crystallite size near 14 nm. The conversion percentage of photocatalytic dichromate ions reduction is increased in the presence of three-layered 0.5 % Pt/TiO2 films under both UV and visible light. The activity of three-layered films is higher compare to the single layered samples. The film contained 0.1 % Pt exhibited the similar activity to titania one.


Keywords


platinum doped titania films; dichromate ions reduction; optical properties; band-gap narrowing; photocatalysis

Full Text:

PDF

References


1. Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972. 238: 37. https://doi.org/10.1038/238037a0

2. Serpone N, Lawless D, Disdier J, Herrmann J.M. Spectroscopic, photoconductivity and photocatalytic studies of TiO2 colloids—naked and with the lattice doped with Cr3+, Fe3+, and V5+ cations. Langmuir. 1994. 10(3): 643. https://doi.org/10.1021/la00015a010

3. Linnik O., Kisch H. On the mechanism of nitrogen fixation at nanostructured iron titanate films. Photochem. Photobiol. Sci. 2006. 5: 938. https://doi.org/10.1039/b608396j

4. Linnik O., Kisch H. Dinitrogen photofixation at ruthenium-modified titania films. Mendeleev Comunications. 2008. 18(1): 10. https://doi.org/10.1016/j.mencom.2008.01.004

5. Eremenko A., Smirnova N., Gnatiuk Yu, Linnik O., Vityuk N., Mukha Yu., Korduban A. Photoelectrochemical and photocatalytic properties of mesoporous TiO2 films modified with silver and gold nanoparticles. Silver and Gold Nanoparticles on Sol-Gel TiO2, ZrO2, SiO2 Surfaces: Optical Spectra, Photocatalytic Activity, Bactericide Properties. (Chapter in Book 3: Composite Materials, INTECH, 2011).

6. Smirnova N., Gnatyuk Yu., Vityuk N., Linnik O., Eremenko A., Vorobets V., Kolbasov G. Nanosized TiO2-based mixed oxide films: sol-gel synthesis, structure, electrochemical characteristics and photocatalytic activity. International Journal of Materials Engineering. 2013. 3(6): 124.

7. Linnik O., Chorna N., Smirnova N. Nonporous iron titanate thin films doped with nitrogen: optical, structural and photocatalytic properties. Nanoscale Research Letters. 2017. 12: 249. https://doi.org/10.1186/s11671-017-2027-7

8. Lee J., Choi W. Photocatalytic Reactivity of Surface Platinized TiO2: Substrate Specificity and the Effect of Pt Oxidation State. J. Phys. Chem. B. 2005. 109(15): 7399. https://doi.org/10.1021/jp044425+

9. Choi J., Park H., Hoffmann M. Combinatorial doping of TiO2 with Pt, Cr, V, and Ni to achieve enhanced photocatalytic activity with visible light irradiation. J. Mater. Res. 2010. 25(1): 149. https://doi.org/10.1557/JMR.2010.0024

10. Zhao W., Sun Y., Castellano F.N. Visible-light induced water detoxification catalyzed by PtII dye sensitized titania. J. Am. Chem. Soc. 2008. 130(38): 12566. https://doi.org/10.1021/ja803522v

11. Ishibai Y., Sato J., Nishikawa T., Miyagishi S. Synthesis of visible-light active TiO2 photocatalyst with Pt-modification: Role of TiO2 substrate for high photocatalytic activity. Appl. Catal. B. 2008. 79(2): 117. https://doi.org/10.1016/j.apcatb.2007.09.040

12. Subramanian V., Wolf E.E., Kamat P.V. Influence of metal/metal ion concentration on the photocatalytic activity of TiO2-Au composite nanoparticles. Langmuir. 2003. 19(2): 469. https://doi.org/10.1021/la026478t

13. Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C. 2000. 1(1): 1. https://doi.org/10.1016/S1389-5567(00)00002-2

14. Kim S., Hwang S.J., Choi W. Visible light active platinum-ion-doped TiO2 photocatalyst. J. Phys. Chem. B. 2005. 109(51): 24260. https://doi.org/10.1021/jp055278y

15. Yang C., Meldon J.H., Lee B., Yi H. Investigation on the catalytic reduction kinetics of hexavalentchromium by viral-templated palladium nanocatalysts. Catal. Today. 2014. 233:108. https://doi.org/10.1016/j.cattod.2014.02.043

16. Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 2005. 44(12): 8269. https://doi.org/10.1143/JJAP.44.8269

17. Katoh R., Furube A., Yamanaka K., Morikawa T. Charge separation and trapping in N-doped TiO2 photocatalysts: a time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2010. 1(22): 3261. https://doi.org/10.1021/jz1011548




DOI: https://doi.org/10.15407/hftp08.04.369

Copyright (©) 2017 D. V. Ihnatiuk, N. P. Smirnova, O. P. Linnik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.