Low-temperature formation of apatite structure of neodymium silicate in silica matrix
DOI: https://doi.org/10.15407/hftp08.04.376
Abstract
At present silicates of one of the rare earth elements, such as neodymium, are used in various fields of technology as materials or components for lasers, solid state fuel cells, ceramics and others because of their optical, electrical, chemical and mechanical properties. Among them, Nd9.33Si6O26 with apatite type structure occupies a significant place because of its electrical properties, as ionic conductor. In many cases, neodymium silicates are obtained by high-temperature synthesis, above 1400 °C. In our work the formation of Nd9.33Si6O26 in silica matrix is shown at lower temperatures. By XRD method phase transformations in composites neodymium oxide - fumed silica with various molar ratios of components in the range of 1:1 to 1:20 were studied. With involvement of elemental analysis and electrical measurements, the formation of neodymium silicate with an apatite type structure was found in all the samples starting at the temperature of 920 °C. Formation of neodymium mono- or disilicate (Nd2SiO5 or Nd2Si2O7) is observed only at temperatures around 1400 °C with a stoichiometric ratio of neodymium and silicon oxides (1:1 or 1:2). In our opinion, Nd9.33Si6O26 is an intermediate phase in the formation of other neodymium silicates in such composites. As the X-ray and elemental analysis showed, the structure of Nd9.33Si6O26 differs from perfect by larger values of the parameters of hexagonal unit cell and much smaller factor of site occupation of 4f neodymium atoms. The composite obtained by annealing of oxides Nd2O3 and fumed SiO2 with a ratio of 1:20 at 1050 °C for 4 hours has an ionic conductivity on oxygen with specific conductivity value of 10–3–10–4 Ohm–1cm–1 in the temperature up to 200 °C as indicated by the linearity of this dependence. The composite Nd9.33Si6O26 – SiO2 with ratio of initial oxides 1:20 also exhibits photoluminescent properties due to the multiband absorption spectrum in the UV and visible region in ranges about 200, 600, 800 nm.
Keywords
References
1. Jiang C., Wu S., Ma Q., Mei Y. Synthesis and microwave dielectric properties of Nd2SiO5 ceramics. J. Alloys Compd. 2012. 544: 141. https://doi.org/10.1016/j.jallcom.2012.07.076
2. Ke S., Wang Y., Pan Z. Synthesis of Nd2Si2O7 ceramic pigment with LiCl as a mineralizer and its color property. Dyes and Pigments. 2014. 108: 98. https://doi.org/10.1016/j.dyepig.2014.04.031
3. Ke S., Wang Y., Pan Z. Effects of precipitant and surfactant on co-precipitation synthesis of Nd2Si2O7 ceramic pigment. Dyes and Pigments. 2015. 118: 145. https://doi.org/10.1016/j.dyepig.2015.03.016
4. Takeda N., Itagaki Y., Aono H., Sadaoka Y. Preparation and characterization of Ln9.33+x/3Si6-xAlxO26 (Ln=La, Nd and Sm) with apatite-type structure and its application to a potentiometric O2 gas sensor. Sens. Actuators, B. 2006. 115(1): 455. https://doi.org/10.1016/j.snb.2005.10.009
5. Kobayashi K., Sakka Y. Rudimental research progress of rare-earth silicate oxyapatites: their dentification as a new compound until discovery of their oxygen ion conductivity. J. Ceram. Soc. Japan. 2014. 122(8): 649. https://doi.org/10.2109/jcersj2.122.649
6. Miller R.O., Rase D.E. Phase equilibrium in the system Nd2O3–SiO2. J. Am. Ceram. Soc. 1964. 47(12): 653. https://doi.org/10.1111/j.1151-2916.1964.tb13132.x
7. Masubuchi Y., Higuchi M., Kodaira K. Reinvestigation of phase relations around the oxyapatite phase in the Nd2O3–SiO2 system. J. Cryst. Growth. 2003. 247(1–2): 207. https://doi.org/10.1016/S0022-0248(02)01908-5
8. Saal J.E., Shin D., Stevenson A.J., Messing G.L., Liu Z.K. First-principles thermochemistry and thermodynamic modeling of the Al2O3–Nd2O3–SiO2–Y2O3 pseudoquaternary system. J. Am. Ceram. Soc. 2010. 93(12): 4158. https://doi.org/10.1111/j.1551-2916.2010.03993.x
9. Devi S., Kumar S., Duhan S. Formation and structural characterization of nanocrystalline neodymium silicates prepared by the chemical process. International Journal of Electronics Engineering. 2010. 2(1): 205.
10. Li H., Baikie T., Pramana S.S., Shin J.F., Keenan P.J., Slater P.R., Brink F., Hester J., An T., White T.J. Hydrothermal synthesis, structure investigation, and oxide ion conductivity of mixed Si/Ge-based apatite-type phases. Inorg. Chem. 2014. 53(10): 4803. https://doi.org/10.1021/ic402370e
11. Borisova E.V., Ignatov A.V., Get'man E.I., Loboda S. N., Ardanova L.I., Pasechnik L.V., Ponurovsky V.S. Sol-gel synthesis, X-ray diffraction studies, and electric conductivity of sodium europium silicate. Hindawi Publishing Corporation Journal of Chemistry. 2013. 2013(Article ID 251349): 6 pages.
12. Hailea S.M., Wuensch B.J. X-ray diffraction study of K3NdSi7O17: a new framework silicate with a linear Si-O-Si bond. Acta Crystallogr., Sect. B: Struct. Sci. 2000. 56(5): 773. https://doi.org/10.1107/S0108768100006704
13. Oranska O.I., Gornikov Yu.I. Phase transformations in composites (SiO2)n(Al2O3)1-n / Nd2O3. Physical Phenomena in Solids: Proc. 12th Intern. Scientific Conf. (Kharkiv, 2015). P.115. [In Russian].
14. Oranska O.I., Gornikov Yu.I. Solid-state reactions in composites Nd2O3 - fumed silica with different content of Nd2O3. Chem. Phys. Technol. of Surface: Proc. All Ukr. Conf. with Intern. Part. (Kyiv, 2016). P.129.
15. Oranska O.I., Gornikov Yu.I. Phase transformations in nanocomposites based on fumed silica, alumina and rare earth oxides Ln2O3 (Ln = Nd, Gd). Him. Fiz. Technol. Poverhni. 2017. 7(2): 155. [In Ukrainian]. https://doi.org/10.15407/hftp08.02.155
16. Oranska O.I., Brichka A.V., Gornikov Yu.I. Structure and optical properties of Nd2O3-, Nd9.33Si6O26-fumed silica composites. In: Chem. Phys. Technol. of Surface: Proc. All Ukr. Conf. with Intern. Part. (Kyiv, 2017). P.115.
17. Nakajima T., Nishio K., Ishigaki T., Tsuchiya T. Preparation and electrical properties of Lnx(SiO4)6O(1.5x−12) (Ln: Nd, La) with apatite structure. J. Sol-Gel Sci. Technol. 2005. 33(1): 107. https://doi.org/10.1007/s10971-005-6709-8
18. Kobayashi K., Sakka Y. Research progress in nondoped lanthanoid silicate oxyapatites as new oxygen-ion conductors. J. Ceram. Soc. Jpn. 2014. 122(11): 921. https://doi.org/10.2109/jcersj2.122.921
19. Liu H., Liao L., Zhang Y., Zhou T., Guo Q., Li L., Mei L. Structure refinement and luminescence properties of a novel apatite-type compound Mn2Gd8(SiO4)6O2. Dyes and Pigments. 2017. 140: 87. https://doi.org/10.1016/j.dyepig.2017.01.033
20. Isaev V.A., Kopytov G.F., Lebedev A.V., Plautskiy P.G. Structure and spectral luminescent properties of the silicates of rare earths with apatite structure. Scientific Journal of KubSAU. 2012. 78(04): 1. [In Russian].
21. Boratyrev V.M., Borysenko L.I., Oranska O.I., Galaburda M.V. Nanocomposites MXOY / SiO2 based on fumed silica and acetates Ni, Mn, Cu, Zn, Mg. Chem. Phys. Technol. of Surface. 2009. 15: 294. [In Russian].
22. Sulim I.Y., Borysenko M.V., Korduban O.M., Gun'ko V.M. Influence of silica morphology on characteristics of grafted nanozirconia. Appl. Surf. Sci. 2009. 255(17): 7818. https://doi.org/10.1016/j.apsusc.2009.04.185
23. Kulik K.S., Borysenko M.V. Synthesis and properties of nanocomposites CeO2 / SiO2. Chem. Phys. Technol. of Surface. 2009. 15: 303. [In Russian].
24. Okudera H., Yoshiasa A., Masubuchi Y., Kikkawa S. Determinations of crystallographic space group and atomic arrangements in oxide-ion-conducting Nd9.33(SiO4)6O2. Crystalline Materials. 2004. 219(1): 27. https://doi.org/10.1524/zkri.219.1.27.25399
DOI: https://doi.org/10.15407/hftp08.04.376
Copyright (©) 2017 O. I. Oranska, Yu. I. Gornikov, A. V. Brichka, S. M. Makhno
This work is licensed under a Creative Commons Attribution 4.0 International License.