Chemistry, Physics and Technology of Surface, 2017, 8 (4), 416-421.

Double-layer silicene-based carcerands: molecular containers for unstable compounds



DOI: https://doi.org/10.15407/hftp08.04.416

O. V. Mykhailenko, Yu. I. Prylutskyy, I. V. Komarov, A. V. Strungar, O. O. Mykhailenko

Abstract


We have studied the formation of a “host-guest” type сarcerand with a double-layer silicene (DL-S) as a host and an unstable antiaromatic cyclobutadiene as a guest.

By employing the methods of MM+, РМ3 and Monte-Carlo, there has been studied the positioning of molecules of cyclobutadiene in a DL-S depending on intercalate concentration and intercalation temperature. At that the deformation vibrations of the DL-S crystal grate do not exceed 0.017 nm, and the vibrations of the intercalate molecules do not exceed 0.025 nm which provides for configuration and conformation stability of the system. The silicene planes do not move relatively each other and the order of the silicon atoms between the planes remains the same – AB… (similar to the silicene single crystal). When initially heated from 0 to ~273 K, the systems energy grows gradually, then rises sharply between 273–300 K and 350–400 K, then, with the temperature growth, it reaches a plateau which proves its high stability up to ~420 K.

In the temperature range 0–273 K there appears physical sorption while chemisorption is observed at higher temperature (~300 K) which is peculiar of π-π interactions of classical aromatic and quasiaromatic cyclic and heterocyclic systems.

There have been calculated the UV-spectra of the DL-S depending on the intercalate concentration in terms of the modified Benes-Hilderbrand method. There has been shown that the association constant of the system studied is 380 l·mol–1, with computation accuracy ≥ 0.977.


Keywords


double-layer silicene; cyclobutadiene; intercalation; modelling; association constant

Full Text:

PDF

References


1. Cram D.J., Karbach S., Kim Y.H., Baczynskyj L., Kallemeyn G.W. Shell closure of two cavitands forms carcerand complexes with components of the medium as permanent guests. J. Am. Chem. Soc. 1985. 107(8): 2575. https://doi.org/10.1021/ja00294a076

2. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications. (Academic Press, 1996).

3. Rodik R.V., Boyko V.I., Kalchenko V.I. Calixarenes in bio-medical researches. Curr. Med. Chem. 2009. 16(13): 1630. https://doi.org/10.2174/092986709788186219

4. Spencer M., Morishita T. (Eds.) Silicene: Structure, Properties and Applications. (Springer Series in Materials Science, 2016). https://doi.org/10.1007/978-3-319-28344-9

5. Quhe R., Fei R., Liu Q., Zheng J., Li H., Xu C., Ni Z., Wang Y., Yu D., Gao Z., Lu J. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2012. 2: 853. https://doi.org/10.1038/srep00853

6. Nguyen N.-T. Silicene transistors: silicene-based nanoelectronics from a single atom layer. Micro Nanosystems. 2014. 6(4): 205.

7. Wang R., Xu M.-S., Pi X.-D. Chemical modification of silicene. Chin. Phys. B. 2015. 24(8): 6807. https://doi.org/10.1088/1674-1056/24/8/086807

8. Li G., Zhao Y.-C., Zheng R., Ni J., Wu Y.-N. Modulation of electronic properties with external fields in silicene-based nanostructures. Chin. Phys. B. 2015. 24(8): 7302. https://doi.org/10.1088/1674-1056/24/8/087302

9. Liu H.-S., Han N.-N., Zhao J.-J. Growth mechanism and modification of electronic and magnetic properties of silicene. Chin. Phys. B. 2015. 24(8): 7308. https://doi.org/10.1088/1674-1056/24/8/087303

10. Cram D., Cram J. Container Molecules and Their Guests. (The Royal Society of Chemistry, 1997).

11. Aghaei S.M., Monshi M.M., Calizo I. A theoretical study of gas adsorption on silicene nanoribbons and its application in a highly sensitive molecule sensor. RSC Adv. 2016. 6: 94417. https://doi.org/10.1039/C6RA21293J

12. Mykhailenko O.V., Prylutskyy Yu.I., Komarov I.V., Strungar A.V. Structure and thermal stability of Co- and Fe - intercalated double silicene layers. Nanoscale Res. Lett. 2017. 12: 110. https://doi.org/10.1186/s11671-017-1874-6

13. Peigney A., Laurent Ch., Flahaut E., Bacsa R., Rousset A. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001. 39(4): 507. https://doi.org/10.1016/S0008-6223(00)00155-X

14. Geim A.K., Novoselov K.S. The structure of suspended graphene sheets. Nature. 2007. 446: 60. https://doi.org/10.1038/nature05545

15. Ritter U., Scharff P., Grechnev G.E., Desnenko V.A., Fedorchenko A.V., Panfilov A.S., Prylutskyy Yu.I., Kolesnichenko Yu.A. Structure and magnetic properties of multi-walled carbon nanotubes modified with cobalt. Carbon. 2011. 49(13): 4443. https://doi.org/10.1016/j.carbon.2011.06.039

16. Durkop T., Kim B.M., Fuhrer M.S. Properties and applications of high-mobility semiconducting nanotubes. J. Phys.: Condens. Matter. 2004. 16(18): 553. https://doi.org/10.1088/0953-8984/16/18/R01

17. Kane C.L., Mele E.J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005. 95: 226801. https://doi.org/10.1103/PhysRevLett.95.226801

18. Mykhailenko O., Matsui D., Prylutskyy Yu., Normand F., Eklund P., Scharff P. Monte Carlo simulation of intercalated carbon nanotubes. J. Mol. Model. 2007. 13(1): 283. https://doi.org/10.1007/s00894-006-0129-8

19. Chowdhury S., Jana D. A theoretical review on electronic, magnetic and optical properties of silicene. Rep. Prog. Phys. 2016. 79(12): 6501. https://doi.org/10.1088/0034-4885/79/12/126501

20. Rapaport D.C. The Art of Molecular Dynamics Simulation. (Cambridge, UK: Cambridge University Press, 1995).

21. Tersoff J. Modelling solid–state chemistry: interatomic potentials for multicomponent systems. Phys. Rev. B. 1989. 39(8): 5566. https://doi.org/10.1103/PhysRevB.39.5566

22. Dorfman S., Mundim K.C., Fuks D., Berner A., Ellis D.E. Snapshot of an electron orbital. Mater. Sci. Eng. 2001. 15: 191. https://doi.org/10.1016/S0928-4931(01)00308-3




DOI: https://doi.org/10.15407/hftp08.04.416

Copyright (©) 2017 O. V. Mykhailenko, Yu. I. Prylutskyy, I. V. Komarov, A. V. Strungar, O. O. Mykhailenko

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.