Chemistry, Physics and Technology of Surface, 2017, 8 (4), 432-438.

Room-temperature gas sensor based on semiconductor nanoscale heterostructures ZnS/CdS



DOI: https://doi.org/10.15407/hftp08.04.432

S. L. Prokopenko, G. M. Gunya, S. M. Makhno, P. P. Gorbyk

Abstract


Nanoscale heterostructures ZnS/CdS have been synthesized in order to put into effect those gas sensors, which work at room temperature. Synthesis was carried out in two stages. The first stage is the formation of CdS nanorods. The second stage is solvothermal approach, it leads to deposition and growth of a ZnS particles on CdS nanoparticles. A number of samples with different molar ratio Zn/Cd were synthesized.

The XRD method shows appearance of the cubic phase of ZnS on hexagonal CdS. The size of the synthesized ZnS/CdS nanorods is an average length of 150–200 nm and a thickness approximately of 20 nm. Optical spectra for all the synthesized samples were recorded in the wavelength ranging of 350–800 nm at room temperature. The band gap of the synthesized CdS nanorods is 2.40 eV, those of the heterostructures 0.75 ZnS/CdS and 1.0 ZnS/CdS are 2.38 and 2.35 eV respectively.

The dynamic response characteristics of sensors was measured in air and in the presence of acetone or ammonia gas. The measurement was performed at room temperature. Each exposure/recovery cycle was carried out for an exposure interval of 200–250 s followed by a recovery interval of 200 s in air. With an increase of amount of the ZnS on the CdS surface, the response of the sensor increases respectively. All the investigated sensors based on ZnS/CdS heterostructures have better sensitivity for NH3 atmosphere (for 0.75 ZnS/CdS about 1.4 times higher) in comparison with acetone atmosphere.


Keywords


sensor; ZnS/CdS heterostructures; NH3; acetone; nanorods

Full Text:

PDF

References


1. Murugan A.V., Sonawane R.S., Kale B.B., Apte S.K., Kulkarni A.V. Microwave–solvothermal synthesis of nanocrystalline cadmium sulphide. Mater. Chem Phys. 2001. 71(1): 98. https://doi.org/10.1016/S0254-0584(00)00533-2

2. Xia Y.N., Yang P.D., Sun Y.G., Wu Y.Y., Mayers B., Gates B., Yin Y.D., Kim F., Yan Y.Q. One-dimensional nanostructures: synthesis, characterization, and applications. Adv. Mater. 2003. 15(5): 353. https://doi.org/10.1002/adma.200390087

3. Liu F., Chu X.F., Dong Y.P., Zhang W.B., Sun W.Q., Shen L.M. Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators, B. 2013. 188: 469. https://doi.org/10.1016/j.snb.2013.06.065

4. Do J.-S., Wang S.-H. On the sensitivity of conductimetric acetone gas sensor based on polypyrrole and polyaniline conducting polymers. Sens. Actuators, B. 2013. 185: 39. https://doi.org/10.1016/j.snb.2013.04.080

5. Khandekar M.S., Tarwal N.L., Mulla I.S., Suryavanshi S.S. Gas sensing performance of hydrothermally grown CeO2–ZnO composites. Ceram. Int. 2014. 40(4): 447. https://doi.org/10.1016/j.ceramint.2013.06.021

6. Li W.Q., Ma S.Y., Luo J., Mao Y.Z., Cheng L., Gengzang D.J., Xu X.L., Yan S.H. Synthesis of hollow SnO2 nanobelts and their application in acetone sensor. Mater. Lett. 2014. 132: 338. https://doi.org/10.1016/j.matlet.2014.06.112

7. Ding M., Sorescu D.C., Star A. Photoinduced charge transfer and acetone sensitivity of single-walled carbon nanotube−titanium dioxide hybrids. J. Am. Chem. Soc. 2013. 135(24): 9015. https://doi.org/10.1021/ja402887v

8. Aslam M., Chaudhary V.A., Mulla I.S., Sainkar S.R., Mandale A.B., Belhekar A.A., Vijayamohanan K. A highly selective ammonia gas sensor using surface-ruthenated zinc oxide. Sens. Actuators, A. 1999. 75(2): 162. https://doi.org/10.1016/S0924-4247(99)00050-3

9. Karunagaran B., Uthirakumar P., Chung S.J., Velumani S., Suh E.-K. TiO2 thin film gas sensor for monitoring ammonia. Mater. Charact. 2007 58(8–9): 680. https://doi.org/10.1016/j.matchar.2006.11.007

10. Ivanov P., Hubalek J., Malysz K., Práˇsek J., Vilanova X., Llobet E., Correig X. A route toward more selective and less humidity sensitive screen-printed SnO2 and WO3 gas sensitive layers. Sens. Actuators, B. 2004. 100(1–2): 221. https://doi.org/10.1016/j.snb.2003.12.065

11. Nagarethinam V.S., Arunkumar N., Balu A.R., Suganya M., Selvan G. Fabrication of cadmium sulfide thin films by an automated trigger enhanced spray technique at two different substrate temperatures. Journal of Electron Devices. 2012. 14: 1108.

12. Amalnerkar D.P., Pavaskar N.R., Date S.K., Sinha A.P.B. Studies of fritted thick films of photoconducting CdS. Indian J. Pure Appl Phys. 1985. 23: 539.

13. Prokopenko S.L., Gunya G.M., Makhno S.N., Gorbyk P.P. Synthesis and electrophysical properties of composite materials based on heterostructures CuS/CdS, Cu2S/CdS, Ag2S/CdS. J. Nanostruct. Chem. 2014. 4(4): 103. https://doi.org/10.1007/s40097-014-0120-3

14. Amiri O., Hosseinpour-Mashkani S.M., Mohammadi Rad M., Abdvali F. Sonochemical synthesis and characterization of CdS/ZnS core–shell nanoparticles and application in removal of heavy metals from aqueous solution. Superlattices Microstruct. 2014. 66: 67. https://doi.org/10.1016/j.spmi.2013.11.003

15. Reungchaiwat A., Wongchanapiboon T., Liawruangrath S., Phanichphant S. Homemade detection device for a mixture of ethanol and acetone. Sensors. 2007. 7(2): 202. https://doi.org/10.3390/s7020202

16. Morrison S.R., Madou M.J. Chemical Sensing with Solid State Devices. (London: Academic Press, 1989).

17. Luo X.J, Lou Z., Wang L.L., Zheng X.J., Zhang T. Fabrication of flower-like ZnO nanosheet and nanorod-assembled hierarchical structures and their enhanced performance in gas sensors. New J. Chem. 2014. 38: 84. https://doi.org/10.1039/C3NJ00776F

18. Mani G.K., Bosco J., Rayappan B. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators, B. 2013. 183: 459. https://doi.org/10.1016/j.snb.2013.03.132

19. Tulliani J.-M., Cavalieri A., Musso S., Sardella E. Room temperature ammonia sensors based on zinc oxide and functionalized graphite and multi-walled carbon nanotubes. Sens. Actuators, B. 2011. 152(2): 144, https://doi.org/10.1016/j.snb.2010.11.057

20. Takao Y., Miyazaki K., Shimizu Y., Egashira M. High ammonia sensitive semiconductor gas sensors with double-layer structure and interface electrodes. J. Electrochem. Soc. 1994. 141(4): 1028. https://doi.org/10.1149/1.2054836




DOI: https://doi.org/10.15407/hftp08.04.432

Copyright (©) 2017 S. L. Prokopenko, G. M. Gunya, S. M. Makhno, P. P. Gorbyk

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.