Ion-exchange strengthening of lithium-aluminosilicate glass-ceramic protective materials
DOI: https://doi.org/10.15407/hftp09.03.263
Abstract
In view of the intensive increase of the military threat and the rapid weapons development in the world, it is necessary to improve the armored elements for individual and local protection, in particular, by increasing their strengths and hardness characteristics. The peculiarities of the technology of the ion-exchange hardening of β-spodumene glass-ceramics obtained by glass technology are analyzed. The purpose of this work is to develop high-strength lithium-aluminum silicate glass-ceramic materials using the method of low-temperature ion-exchange hardening. Modification of the glass surface was carried out in sodium nitrate vapor for 2 hours under one- and two-stage mechanism. The temperature and processing time were determined using the method of differential-thermal analysis. The structure of materials and the chemical composition of the surface layers were determined by the method of electron probe microanalysis. Mechanical properties were determined using standard material-based techniques.
The method of hardening lithium-aluminum silicate glass-ceramic materials has been developed and the optimal technological parameters of their treatment in sodium nitrate vapors are determined in connection with the peculiarities of their structure. The ion-exchange mechanism was studied and the structure of the surface layer in the experimental glass-ceramic materials was analyzed.
It has been found that ion-exchange hardening in sodium nitrate vapors for glass crystalline material based on lithium disilicate and β-spodumene provides an increase in mechanical properties of the products while preserving the basic performance properties at the level of the parameters of the base material. This will increase the globally competitiveness of domestic protective armored elements.
Keywords
References
1. Grigorjan V.A., Kobylkin I.F., Marinin V.M., Chistjakov E.N. Materialy i zashhitnye struktury dljal okal'nogo i individual'nogo bronirovanija. (Moscow: Radio Soft, 2008). [in Russian].
2. Butaev A.M. Prochnost'stekla. Ionoobmennoe uprochnenie. (Mahachkala: DSU, 1997). [in Russian].
3. Lipat'ev A.S., Plotnikova A.S., SpiridonovJu.A., Lotarev S.V., Mamadzhanova E.H., Sigaev V.N. Ionoobmennoe uprochnenie borosilikatnyh stekol v kalievojselitre i hloridenatrija. Uspehi himii i himicheskoj tehnologii. 2013. 27(5): 54. [in Russian].
4. Suzdal'cev E.I., Rozhkova T.I., Zajchuk T.V. Osobennosti ionoobmennogo uprochnenija steklokeramicheskogo materiala litijaljumosilikatnogo sostava i vlijanie tehnologicheskih faktorov na stepen' uprochnenija. Ogneupory i tehnicheskaj akeramika. 2005. 11: 35. [in Russian].
5. Brahina L.L., Savvova O.V., Babich O.V., Sobol Yu.O. Struktura ta vlastyvosti sklokrystalichnykh materialiv: monohrafiia. (Kharkov: OOO "Kompaniia SMIT", 2016). [in Ukrainian].
6. Patent RF 2272004. Suzdal'cev E.I., Rusin M.Ju., Rozhkova T.I. Sposob uprochnenija izdelij iz steklokristallicheskogo materiala beta-spodumenovogo sostava putem ionnogo obmena. 2006. [in Russian].
7. Puzanova E.G., Martjuhova D.A., Sigaev V.N., Stroganova E.E., Savinkov V.I. Ionoobmennoe uprochnenie opticheskih sitallov litijaljumosilikatnoj sistemy. Uspehi v himii i himicheskoj tehnologii. 2016. 30(7): 93. [in Russian].
8. Gomon V.M., Dubovik V.N., Rajhel' A.M., Nepomnjashhij O.A., Pokolenko V.I., Ivchenko L.G., Iotkovskaja L.M. Uprochnenie sitallov. Steklo i keramika. 1991. 9: 9. [in Russian].
9. Rajhel' A.M., Nepomnjashhij O.A., Ivchenko L.G., Trushina N.L. Treshhinostojkost' tehnicheskih stekol i sitallov. Steklo i keramika. 1993. 6: 18. [in Russian].
10. Rozhkova T.I. Ph.D (Tech.) Thesis (Obninsk, 2009). [in Russian].
11. FeihS., Manatpon K., Mathys Z., Gibson A.G., Mouritz A.P. Strength degradation of glass fibers at high temperatures. J. Mater. Sci. 2009. 44(2): 392. https://doi.org/10.1007/s10853-008-3140-x
12. StarcevJu.K., Priven' A.I. Raschetsvojstv i naprjazhenij v slojahstekla, modificiruemyh ionnym obmenom. 2. Relaksacija svojstv tonkogo sloja stekla posle bystrogo izmenenija ego sostava. Fizika i himiya stekla. 1996. 22(2): 137. [in Russian].
13. Savvova O.V., Topchyi V.L., Smyrnova Yu.O., Petrov D.V. Vplyv v`iazkosti na formuvannia struktury optychnoprozorykh sklokrystalichnykh materialiv na osnovi dysylikatu litiiu v protsesi termichnoho obroblennia. Voprosy khimii I khimicheskoi tekhnologii. 2017.6: 89.[in Ukrainian].
14. Savvova O., Babich O., Voronov G., Ryabinin S. High-strength spodumene glass-ceramic materials. Strength of materials. 2017. 49(3): 488. https://doi.org/10.1007/s11223-017-9890-4
15. Betehtin V.I. Poristost' i mehancheskie svojstva tverdyh tel. Vestnik Tambovskogo universiteta. Serija: Estestvennye i tehnicheskie nauki. 1998. 3(3): 209. [in Russian].
16. Kopachevskij V., Bojkov V. Opredelenie legkihj elementov (Li, Be, B) v steklah s pomoshh'ju analizatora LEA-S500. Analitika. 2013. 6: 56.[in Russian].
17. Eremjashev V.E., Trofimov E.A., Anikeev A.N. Vlijanie vody na strukturu i dr. Shhelochnyh borosilikatnyh stekol. Vestnik JuUrGU. Serija: Fizicheskaja himija. 2012. 36: 26. [in Russian].
18. Lavrov R.V.Ph. D. (Tech.) diss. (Belgorod, 2015). [in Russian].
19. Pljusnina I.I. Infrakrasnye spektry silikatov.(Moscow: MGU, 1967). [in Russian].
20. Sokolov I.A., Murin I.V., Krijt V.E., Gorjainova A.I., Pronkin A.A. Stroenie anionnoj matricy shhelochnyh fosfatnyh stekol. Vestnik Sankt-Peterburgskogo universiteta. Serija 4: Fizika, Himija. 2012. 4: 54.[in Russian].
DOI: https://doi.org/10.15407/hftp09.03.263
Copyright (©) 2018 O. V. Savvova, G. K. Voronov, V. L. Topchiy, S. A. Ryabinin, O. I. Fesenko
This work is licensed under a Creative Commons Attribution 4.0 International License.