Chemistry, Physics and Technology of Surface, 2018, 9 (3), 275-288.

Investigation of the interaction of caffeic acid with surface of nanosized cerium dioxide by methods of thermodesorption mass-spectrometry and IR-spectroscopy



DOI: https://doi.org/10.15407/hftp09.03.275

N. N. Nastasiienko, B. B. Palianytsia, M. T. Kartel, M. Larsson, T. V. Kulik

Abstract


The study of the thermochemical properties of caffeic acid and its surface complexes is important for the pharmaceutical and food industries, medicine and for development of technologies of heterogeneous catalytic pyrolysis of the renewable plant biomass components.

In this work, the structure of the surface complexes of caffeic acid on the surface of nanosized cerium dioxide was investigated using FTIR spectroscopy, depending on the degree of the surface coverage (0.1–1.2 mmol/g). Thermal transformations of surface complexes were studied using temperature-programmed desorption mass spectrometry (TPD MS).

The analysis of the magnitude of the difference between the assymmetric and symmetric carboxylate stretches СОО- (...) and in case of monodentate coordination, between the C=O and CO stretches (...) was carried out. Based on the obtained values of D, it can be assumed that bidentate chelating complexes ( ≈ 72 cm–1), bidentate bridging complexes ( ≈ 110 cm–1), and monodentate bound complexes ( ≈ 236 cm–1) of caffeic acid are present on the nanoceria surface. In addition, complexes bound through the phenolic hydroxyl groups are present on the surface. This is due to the ability of the nanoceria to generate basic hydroxyl groups that are able to deprotonate the phenolic groups to form phenolates on the surface.

The analysis of mass spectrometric data allowed identification of products of thermal transformation and suggested possible ways of forming 3,4-dihydroxyphenylethylene, pyrocatechol, and phenol from surface complexes of caffeic acid, the structure of which was confirmed by data of IR spectroscopy. The kinetic parameters of the phenol formation reaction were calculated. It was established that on the surface of CeO2 the decarboxylation, dehydration and decarbonylation reactions of caffeic acid occur effectively. These reactions are the desirable processes in biomass conversion technologies.


Keywords


caffeic acid; cerium dioxide; carboxylate complexes; phenolates; thermal transformations; FTIR- spectroscopy; TPD MS; pyrocatechol; hydroxybenzene

Full Text:

PDF (Українська)

References


1. Crozier A., Jaganath I.B., Clifford M.N. Dietary phenolics: chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009. 26(8): 1001. https://doi.org/10.1039/b802662a

2. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010. 2(12): 1231. https://doi.org/10.3390/nu2121231

3. Saxena M., Saxena J., Pradhan A. Flavonoids and phenolic acids as antioxidants in plants and human health. International Journal of Pharmaceutical Sciences Review and Research. 2012. 16(2): 130.

4. Ozçeli B., Kartal M., Orhan I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011. 49(4): 396. https://doi.org/10.3109/13880209.2010.519390

5. Huang D.W., Shen S.C., Wu J.S. Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J. Agric. Food Chem. 2009. 57(17): 7687. https://doi.org/10.1021/jf901376x

6. Zhang L., Ravipati A.S., Koyalamudi S.R., Jeong S., Reddy N., Smith P.T., Bartlett J., Shanmugam K., Munch G., Wu M.J. Antioxidant and anti-inflammatory activities of selected medicinal plants containing phenolic and flavonoid compounds. J. Agric. Food Chem. 2011. 59(23): 12361. https://doi.org/10.1021/jf203146e

7. Pandey K.B., Rizvi S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009. 2(5): 270. https://doi.org/10.4161/oxim.2.5.9498

8. Huang W.Y., Cai Y.Z., Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutrition and Cancer. 2010. 62(1): 1. https://doi.org/10.1080/01635580903191585

9. Jin D., Mumper R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules. 2010. 15(10): 7313. https://doi.org/10.3390/molecules15107313

10. Scalbert A., Manach C., Remesy C., Morand C. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005. 45(4): 287. https://doi.org/10.1080/1040869059096

11. Medical chemistry and clinical application of silicon dioxide. Ed. A.A. Chuiko. (Kyiv: Naukova dumka, 2003). [in Ukrainian].

12. Gun'ko V.M., Turov V.V., Zarko V.I., Dudnik V.V., Tischenko V.A., Voronin E.F., Kazakova O.A., Silchenko S.S., A.A. Chuiko Aqueous Suspensions of Fumed Silica and Adsorption of Proteins. J. Colloid. Interface Sci. 1997. 192(1): 166. https://doi.org/10.1006/jcis.1997.4985

13. Patent US 50289. Chuiko O.O., Barvinchenko V.M., Pogorelyi V.K. The method of making of solid drug form with regulable active substance release. 2002.

14. Kulik T.V., Barvinchenko V.N., Palyanitsa B.B., Smirnova O.V., Pogorelyi V.K., Chuiko A.A. A desorption mass spectrometry study of the interaction of cinnamic acid with a silica surface. Russ. J. Phys. Chem. 2007. 81(1): 83. https://doi.org/10.1134/S0036024407010165

15. Kulik V., Lipkovska N.A., Barvinchenko V.N., Palyanytsya B.B., Kazakova O.A., Dovbiy O.A., Pogorelyi V.K. Interactions between bioactive ferulic acid and fumed silica by UV–vis spectroscopy, FT-IR, TPD MS investigation and quantum chemical methods. J. Colloid Interface Sci. 2009. 339(1): 60. https://doi.org/10.1016/j.jcis.2009.07.055

16. Kulik T.V., Lipkovska N.O., Barvinchenco V.M., Palyanytsya B.B., Kazakova O.A., Dudik O.O., Menyhárd A., László K. Thermal transformation of bioactive caffeic acid on fumed silica seen by UV-spectroscopy, thermogtavimetric analisis, temperature programmed desorption mass spectrometry and quantum chemical methods. J. Colloid. Interface Sci. 2016. 470: 132. https://doi.org/10.1016/j.jcis.2016.02.039

17. Ferracane R., Pellegrini N., Visconti A., Graziani G., Chiavaro E., Miglio C., Fogliano V. Effects of different cooking methods on antioxidant profile, antioxidant capacity, and physical characteristics of artichoke. J. Agric. Food Chem. 2008. 56(18): 8601. https://doi.org/10.1021/jf800408w

18. Davidov-Pardo G., Arozarena I., Marin-Arroyo M.R. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur. Food Res. Technol. 2011. 232(2): 211. https://doi.org/10.1007/s00217-010-1377-5

19. Pandino G., Lombardo S., Williamson G., Mauromicale G. Polyphenol profile and content in wild and cultivated Cynara cardunculus L. Italian Journal of Agronomy. 2012. 7(3): 254. https://doi.org/10.4081/ija.2012.e35

20. Lombardo S., Pandino G., Mauro R., Mauromicale G. Variation of phenolic content in globe artichoke in relation to biological, technical and environmental factors. Italian Journal of Agronomy. 2009. 4(4): 181. https://doi.org/10.4081/ija.2009.4.181

21. Llorach R., Espin J.C., Tomas-Barberan F.A., Ferreres F. Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J. Agric. Food Chem. 2002. 50(12): 3458. https://doi.org/10.1021/jf0200570

22. Simon V., A. Thuret A., Candy L., Bassil S., Duthen S., Raynaud C., Masseron A. Recovery of hydroxycinnamic acids from renewable resources by adsorption on zeolites. Chem. Eng. J. 2015. 280(15): 748. https://doi.org/10.1016/j.cej.2015.06.009

23. Ierna A., Mauro R.P., Mauromicale G. Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenergy. 2012. 36: 404. https://doi.org/10.1016/j.biombioe.2011.11.013

24. Ralph J. Hydroxycinnamates in lignification. Phytochem. Rev. 2010. 9(1): 65. https://doi.org/10.1007/s11101-009-9141-9

25. Chaturvedi V., Verma P. An overview of key pretreatment processes employed for bioconversion of lignocellulosic biomass into biofuels and value added products. 3 Biotech. 2013. 3(5): 415.

26. Palianytsia B.B., Kulik T.V., Dudik O.O., Toncha O.L., Cherniavska T.V. International Congress on Energy Efficiency and Energy Related Materials (ENEFM 2013), Series: Springer Proceedings in Physics. 2015. 155(14): 19.

27. Davalos J.Z., Herrero R., Chana A., Guerrero A., Jiménez P., Santiuste J.M. Energetics and structural properties, in the gas phase, of trans-hydroxycinnamic acids. J. Phys. Chem. A. 2012. 116(9): 2261. https://doi.org/10.1021/jp2090439

28. Kumar N., Pruthi V., Goel N. Structural, thermal and quantum chemical studies of p-coumaric and caffeic acids. J. Mol. Struct. 2015. 1085: 242. https://doi.org/10.1016/j.molstruc.2014.12.064

29. Kulik T.V., Barvinchenko V.N., Palyanytsya B.B., Lipkovska N.A., Dudik O.O. Thermal transformations of biologically active derivatives of cinnamic acid by TPD MS investigation. J. Anal. Appl. Pyrolysis. 2011. 90(2): 219. https://doi.org/10.1016/j.jaap.2010.12.012

30. Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016. 116(10): 5987. https://doi.org/10.1021/acs.chemrev.5b00603

31. Kharlampovich G.D., Churkin Y.V. Phenols. (Moskow: Chemistry, 1974). [in Russian].

32. Tarasevich B.N. IR spectra of the main classes of organic molecule. (Moskow: Moskow Lomonosov University, 2012). [in Russian].

33. Nakanishi K. Infrared adsorption spectroscopy. (San Francisco: Holden Day, 1962).

34. Bellamy L.J. Infra-red spectra of complex molecule. (London: Methuen & Co LTD, 1963).

35. Brand J.K., Eglinton G. Applications of spectroscopy to organic chemistry. (London: Oldbournepress, 1965).

36. Kazitsina L.A., Kupletskia N.B. Applications of UV-, IR-, NMR- and mass-spectroscopy in organic chemistry. (Moskow: Moskow University Press, 1979). [in Russian].

37. Kulyk K., Palianytsia B., Alexander J., Azizova L., Borysenko M., Larsson M., Kartel M.T., Kulik T. Kinetics of Valeric Acid Ketonization and Ketenization in Catalytic Pyrolisis on Nanosized SiO2, γ-Al2O3 CeO2/SiO2, Al2O3/TiO2 and TiO2/Al2O3.Chem. Phys. Chem. 2017. 18(14): 1943. https://doi.org/10.1002/cphc.201601370

38. Palacios E.G., Juares-Lopes G., Monhemius A.J. Infrared spectroscopy of metal carboxylates: II. Analysis of Fe(III), Ni and Zn carboxylate solutions. Hydrometallurgy. 2004. 72(1–2): 139. https://doi.org/10.1016/S0304-386X(03)00137-3

39. Yan Xing, Hong-yun Peng, Meng-xi Zhang, Xia Li, Wei-wei Zeng, Xiao-e Yang Caffeic acid product from the highly copper-tolerant plant Elsholtzia splendens post-phytoremediation: its extraction, purification, and identification. J. Zhejiang. Univ. Sci. B. 2012. 13(6): 487. https://doi.org/10.1631/jzus.B1100298

40. Shiozawa R., Inoue Y., Murata I., Kanamoto I. Effect of antioxidant activity of caffeic acid with cyclodextrins using ground mixture method. Asian J. Pharm. Sci. 2018. 13(1): 24. https://doi.org/10.1016/j.ajps.2017.08.006

41. Sẃisłocka R. Spectroscopic (FT-IR, FT-Raman, UV absorption, 1H and 13C NMR) and theoretical (in B3LYP/6-311++G** level) studies on alkali metal salts of caffeic acid. Spectrochim. Acta, Part A. 2013. 100: 21. https://doi.org/10.1016/j.saa.2012.01.048

42. Stehfest K., Boese M., Kerns G., Piry A., Wilhelm A. Fourier transform infrared spectroscopy as a new tool to determine rosmarinic acid in situ. J. Plant Physiol. 2004. 161(2): 151. https://doi.org/10.1078/0176-1617-01099

43. Williams P.A.M., Gonza’lez Baro´ A.C., Ferrer E.G. Study of the interaction of oxovanadium(IV) with a plant component (caffeic acid). Synthesis and characterization of a solid compound. Polyhedron. 2002. 21(20): 1979. https://doi.org/10.1016/S0277-5387(02)01097-5

44. Jelena Tošović Spectroscopic feature s of caffeic acid: theoretical study. Kragujevac J. Sci. 2017. 39: 99.

45. Higashi K., Tozuka Y., Moribe K., Yamamoto K. Salicylic Acid/γ-Cydodextrin 2:1 and 4:1 Complex Formation by Sealed-Heating Method. J. Pharm. Sci. 2010. 99(10): 4192. https://doi.org/10.1002/jps.22133

46. Kotorlenko A., Alexandrova V.S. Spectral manifestations of change in electronic structure in phenol-phenolate anion-phenoxi radical series. Theor. Exp. Chem. 1982. 18(1): 97. https://doi.org/10.1007/BF00516786

47. Woodruff D.P., Delchar T.A. Modern Techniques of Surface Science. (London: Cambridge University Press, 1986).

48. Kulik T.V. Use of TPD-MS and linear free energy relationships for assessing the reactivity of aliphatic carboxylic acids on a silica surface. J. Phys. Chem. C. 2012. 116(1): 570. https://doi.org/10.1021/jp204266c

49. Cvetanovic R.J., Amenomiya Y. A temperature programmed desorption technique for investigation of practical catalysts. Catal. Rev. 1972. 6(1): 21. https://doi.org/10.1080/01614947208078690

50. Nicholl S.I., Talley J.W. Development of thermal programmed desorption mass spectrometry methods for environmental applications. Chemosphere. 2006. 63(1): 132.https://doi.org/10.1016/j.chemosphere.2005.07.015




DOI: https://doi.org/10.15407/hftp09.03.275

Copyright (©) 2018 N. N. Nastasiienko, B. B. Palianytsia, M. T. Kartel, M. Larsson, T. V. Kulik

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.