Chemistry, Physics and Technology of Surface, 2019, 10 (1), 22-37.

The features of water vapour adsorption on micro- and mesoporous activated carbons



DOI: https://doi.org/10.15407/hftp10.01.022

N. V. Guzenko, P. Lodewyckx, K. László, M. Thommes

Abstract


The investigation of the adsorption behavior of water vapour on porous carbon matrices is still relevant because the humidity of the environment can significantly affect the adsorption capacity of the carbon adsorbents to certain substances. Furthermore, the measurements of water isotherms could also be used to analyze the pore structure of activated carbons. The correlation between the adsorption characteristics of series of activated carbon samples (Norit, NL) with similar values of the specific surface area, but different pore size distribution (different volumes of micro- and mesopores), towards water vapour and their internal structure, defined on the basis of nitrogen adsorption isotherms, as well as the chemical composition and the nature of primary adsorption centers of the surface has been researched in the study. By the methods of Thermogravimetric Analysis (TGA), Temperature-Programmed Desorption Mass Spectrometry (TPD-MS) and X-ray Photoelectron Spectroscopy (XPS) it has been determinated of quantitative and qualitative composition of the surface of investigated carbons; it has been shown that the mesoporous samples of activated carbon contain a greater total amount of surface oxygen-containing complexes than microporous samples. The adsorption and desorption branches of water adsorption isotherms for the microporous carbons come close to each other and give a plateau at high relative pressures wherein the water adsorption capacities for the microporous samples correspond to their micropore volumes determined from nitrogen adsorption isotherms. As opposed to this, a gradual rise of water uptake and the existence of wide hysteresis loops at high relative pressures are observed for the mesoporous carbons. Moreover, the maximum values of water adsorption in this case considerably exceed the micropore volumes, and are attributable to the capillary condensation in mesopores. Nevertheless, the total volumes of water uptake both for micro- and mesoporous activated carbons are significantly less than those determined from nitrogen adsorption. This could be due to a mechanism of cluster pore filling in which the water density is less than its bulk density. In addition, probably, the water can not condense in the larger mesopores.


Keywords


activated carbons; nitrogen adsorption; pore structure characterization; primary adsorption centre; water vapour isotherm

Full Text:

PDF (Українська)

References


1. Dubinin M.M. Water vapor adsorption and the microporous structures of carbonaceous adsorbents. Carbon. 1980. 18(5): 335. https://doi.org/10.1016/0008-6223(80)90007-X

2. Vartapetyan R.Sh., Voloshchuk A.M. The mechanism of the adsorption of water molecules on carbon adsorbents. Russ. Chem. Rev. 1995. 64(11): 985. https://doi.org/10.1070/RC1995v064n11ABEH000189

3. Gregg S.J., Sing K.S.W. Adsorption, Surface Area and Porosity. 2 ed. (London: Academic Press, 1982).

4. Liu L., Tan S.J., Horikawa T., Do D.D., Nicholson D., Liu J. Water adsorption on carbon - A review. Adv. Colloid Interface Sci. 2017. 250: 64. https://doi.org/10.1016/j.cis.2017.10.002

5. Marban G., Fuertes A. Co-adsorption of n-butane/water vapour mixtures on activated carbon fibre-based monoliths. Carbon. 2004. 42(1): 71. https://doi.org/10.1016/j.carbon.2003.09.018

6. Muller E.A., Hung F.R., Gubbins K.E. Adsorption of water vapor – methane mixtures on activated carbons. Langmuir. 2000. 16(12): 5418. https://doi.org/10.1021/la991312m

7. Pires J., Pinto M.L., Carvalho A., Carvalho M.B. Assessment of hydrophobic-hydrophilic properties of microporous materials from water adsorption isotherms. Adsorption. 2003. 9(4): 303. https://doi.org/10.1023/A:1026219813234

8. Slasli A.M., Jorge M., Stoecki F., Seaton N.A. Water adsorption by activated carbons in relation to their microporous structure. Carbon. 2003. 41(3): 479. https://doi.org/10.1016/S0008-6223(02)00364-0

9. Wood G.O., Lodewyckx P. Correlation for high humidity corrections of rate coefficients for adsorption of organic vapors and gases on activated carbons in air-purifying respirator cartridges. The International Society for Respiratory Protection. 2002. P. 58.

10. Velasco L.F., Berezovska I., Boutillara Y., Lodewyckx P. The use of organic vapour preadsorption to understand water adsorption on activated carbons. Microporous Mesoporous Mater. 2017. 241: 21. https://doi.org/10.1016/j.micromeso.2016.12.005

11. Mahle J., Friday D. Water adsorption equilibria on microporous carbons correlated using a modification of the Sircar isotherm. Carbon. 1989. 27(6): 835. https://doi.org/10.1016/0008-6223(89)90033-X

12. Cossarutto L., Zimny T., Kaczmarczyk J., Siemieniewska T., Bimer J., Weber J.V. Transport and sorption of water vapour in activated carbons. Carbon. 2001. 39(15): 2339. https://doi.org/10.1016/S0008-6223(01)00065-3

13. Nguyen Van T., Horikawa T., Do D.D., Nicholson D. Water as a potential molecular probe for functional groups on carbon surfaces. Carbon. 2014. 67: 72. https://doi.org/10.1016/j.carbon.2013.09.057

14. Slasli A.M., Jorge M., Stoeckli F., Seaton N.A. Modelling of water adsorption by activated carbons: effects of microporous structure and oxygen content. Carbon. 2004. 42(10): 1947. https://doi.org/10.1016/j.carbon.2004.03.034

15. Brennan J.K., Bandosz T.J., Thomson K.T., Gubbins K.E. Water in porous carbons. Colloids Surf. A. 2001. 187–188: 539. https://doi.org/10.1016/S0927-7757(01)00644-6

16. Zeng Y., Prasetyo L., Nguyen V.T., Horikawa T., Do D.D., Nicholson D. Characterization of oxygen functional groups on carbon surfaces with water and methanol adsorption. Carbon. 2015. 81: 447. https://doi.org/10.1016/j.carbon.2014.09.077

17. Horikawa T., Tan S.(J.), Do D.D., Sotowa K.-I., J. Alcántara-Avilaa R., Nicholson D. Temperature dependence of water adsorption on highly graphitized carbon black and highly ordered mesoporous carbon. Carbon. 2017. 124: 271. https://doi.org/10.1016/j.carbon.2017.08.067

18. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Appl. Chem. 1985. 57(4): 603. https://doi.org/10.1351/pac198557040603

19. Kowalczyk P., Kaneko K., Solarz L., Terzyk A.P., Tanaka H., Holyst R. Modeling of the hysteresis phenomena in finite-sized slitlike nanopores. Revision of the resent results by rigorous numerical analysis. Langmuir. 2005. 21(14): 6613. https://doi.org/10.1021/la0501132

20. Freeman J.J., Tomlinson J.B., Sing K.S.W., Theocharis C.R. Adsorption of nitrogen and water vapour by activated Nomex chars. Carbon. 1995. 33(8): 795. https://doi.org/10.1016/0008-6223(95)00005-X

21. Peri-Grujic A.A., Neskovic O.M., Veljkovic M.V., Lausevic M.D., Lausevic Z.V. A TPD-MS study of glassy carbon surfaces oxidized by CO2 and O2. J. Serb. Chem. Soc. 2002. 67(11): 761. https://doi.org/10.2298/JSC0211761P

22. Avraham I., Danon A., Koresh J.E. Study of carbon molecular sieve fibres by atmospheric TPD-MS of H2O, CO, CO2. J. Chem. Soc., Faraday Trans. 1998. 94(13): 1869. https://doi.org/10.1039/a801056k

23. Valdes H., Sanchez-Polo M., Rivera-Utrilla J., Zaror C.A. Effect of Ozone Treatment on Surface Properties of Activated Carbon. Langmuir. 2002. 18(6): 2111. https://doi.org/10.1021/la010920a

24. Fabregat A., Bengoa C., Font J., Stueber F. Reduction, modification, and valorization of sludge: removals. (London: IWA Publishing, 2011).

25. Frost R.L., Weier M.L. Thermal treatment of whewellite - a thermal analysis and Raman spectroscopic study. Thermochimica Acta. 2004. 409(1): 79. https://doi.org/10.1016/S0040-6031(03)00332-0

26. Vickerman J.C., Gilmore I.S. Surface Analysis: the principal techniques. 2 ed. (Wiley, 2009). https://doi.org/10.1002/9780470721582

27. Nalwa H.S. Experimental methods in the physical sciences. Advances in surface science. V. 38. (Academic press, 2001).

28. Herman G.S., Dohna’lek Z., Ruzycki N., Diebold U. Experimental Investigation of the Interaction of Water and Methanol with Anatase-TiO2. J. Phys. Chem. B. 2003. 107(12): 2788. https://doi.org/10.1021/jp0275544

29. Kerber S.J., Bruckner J.J., Wozniak K., Seal S., Hardcastle S., Barr T.L. The nature of hydrogen in x-ray photoelectron spectroscopy: General patterns from hydroxides to hydrogen bonding. J. Vac. Sci. Technol. A. 1996. 14(3): 1314. https://doi.org/10.1116/1.579947

30. Ketteler G., Ashby P., Mun B.S., Ratera I., Bluhm H., Kasemo B., Salmeron M. In situ photoelectron spectroscopy study of water adsorption on model biomaterial surfaces. Journal of Physics: Condensed Matter. 2008. 20(18): 184024. https://doi.org/10.1088/0953-8984/20/18/184024

31. Winter B., Aziz E.F., Hergenhahn U., Faubel M., Hertel I.V. Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J. Chem. Phys. 2007. 126(12): 124504. https://doi.org/10.1063/1.2710792

32. Simonsen M.E., Sonderby C., Li Zh., Sogaard E.G. XPS and FT-IR investigation of silicate polymers. J. Mater. Sci. 2009. 44(8): 2079. https://doi.org/10.1007/s10853-009-3270-9

33. Park Soo-Jin, Kim Ki-Seok. Surface Characterization of Carbon Materials by X-ray Photoelectron Spectroscopy. Microscopy: Science, Technology, Applications and Education. 2010. 3: 1905.

34. Matsuoka T., Hatori H., Kodama M., Yamashita J., Miyajima N. Capillary condensation of water in the mesopores of nitrogen-enriched carbon aerogels. Carbon. 2004. 42(11): 2346. https://doi.org/10.1016/j.carbon.2004.04.031

35. Bandosz T., Jagiello J., Schwarz J. Effect of surface chemistry on sorption of water and methanol on activated carbons. Langmuir. 1996. 12(26): 6480. https://doi.org/10.1021/la960340r

36. Kumar K.V., Preuss K., Guo Z.X., Titirici M.M. Understanding the Hydrophilicity and Water Adsorption Behavior of Nanoporous Nitrogen-Doped Carbons. J. Phys. Chem. C. 2016. 120(32): 18167. https://doi.org/10.1021/acs.jpcc.6b06555

37. Morishige K., Kawai T., Kittaka S. Capillary Condensation of Water in Mesoporous Carbon. J. Phys. Chem. C. 2014. 118(9): 4664. https://doi.org/10.1021/jp4103564

38. Do D.D., Do H.D. A model for water adsorption in activated carbon. Carbon. 2000. 38(5): 767. https://doi.org/10.1016/S0008-6223(99)00159-1

39. Kimura T., Kanoh H., Kanda T., Ohkudo T., Hattori Y., Higaonna Y., Denoyel R., Kaneko K. Cluster-associate filling of water in hydrophobic carbon micropores. J. Phys. Chem. B. 2004. 108(37): 14043. https://doi.org/10.1021/jp048934n

40. Kaneko K., Hanzawa Y., Iiyama T., Kanda T., Suzuki T. Cluster-mediated water adsorption on carbon nanospaces. Adsorption. 1999. 5(1): 7. https://doi.org/10.1023/A:1026471819039

41. Ohba T., Kanoh H., Kaneko K. Cluster-growth-induced water adsorption in hydrophobic carbon nanopores. J. Phys. Chem. B. 2004. 108(39): 14964. https://doi.org/10.1021/jp048323v

42. Hanzawa Y., Kaneko K. Lack of a predominant adsorption of water on carbon mesopores. Langmuir. 1997. 13(22): 5802. https://doi.org/10.1021/la970498r




DOI: https://doi.org/10.15407/hftp10.01.022

Copyright (©) 2019 N. V. Guzenko, P. Lodewyckx, K. László, M. Thommes

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.