Sorption of uranium(VI) and cobalt(II) ions by iron-containing nanocomposites based on palygorskite
DOI: https://doi.org/10.15407/hftp10.01.048
Abstract
Iron nanoparticles show great reactivity in the remediation of groundwater and soil or other environmental applications, however, the persistence and dispersion of iron nanoparticles need to be improved. In this study, palygorskite and hexadecyl trimethylammonium modified palygorskite were used to support iron nanoparticles.The electron microscopic study of the obtained materials is performed. Iron nanoparticles had a core–shell structure with the core being iron, and the shell consisting of iron (hydr)oxides were detected by X-ray diffraction patterns. The sorption of uranium(VI) and cobalt(II) ions from contaminated waters using nanodispersed reactive active material on the basis of modified surfactant of clay mineral were investigated. The reduction of U(VI) and Co(II) was highest with HDTMA-palygorskite/iron particles, followed by palygorskite/iron particles and free iron nanoparticles.It has been shown that the efficiency of removal of metal ions is substantially influenced by the pH of the aqueous medium, the content of surfactant and the amount of immobilized nanosized Fe0 on the surface of the palygorskite. The influence of iron in the composite on its sorption properties was investigated. It has been found that the optimum content of Fe in the composite for the extraction of Co(II) and U(VI) ions from aqueous solutions is 10 % of the mass of the sorbent. The processes of aging of composites and loss of reactivity with respect to Co(II) ions are studied. The possibility of their use in the purification of groundwater with the use of modern environmental technologies is shown.It has been found that the composite sorbent exhibits the best sorption properties in relation to both uranium(VI) and cobalt(II), rather than pure nanosized iron, due to the increase of its dispersion due to the decrease in the agglomeration of nanosized iron particles and the increase in the specific surface area of the modified specimens. The presence of organo-palygorskite apparently decreased the extent of aggregation and the size of the iron particles. The prospect of using composites based on palygorskite and organopalygorskite with a layer applied Fe0 for the effective removal of heavy metal ions and radionuclides from aqueous media has been established.
Keywords
References
1. Fu F., Dionysiou D.D., Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater. 2014. 267: 194. https://doi.org/10.1016/j.jhazmat.2013.12.062
2. Chekli L., Bayecarmadi B., Sekine R., Sarkar B., Shen A., Scheckel K., Skinner W., Naidu R., Shon H., Lombi E., Donner E. Analytical characterization on nanoscale zero-valent iron: a methodological review. Anal. Chim. Acta. 2016. 903: 13. https://doi.org/10.1016/j.aca.2015.10.040
3. Tosco T., Papini M., Viggi C. Nanoscale zero-valent iron particles for groundwater remediation: a review. J. Cleaner. Prod. 2014. 77: 10. https://doi.org/10.1016/j.jclepro.2013.12.026
4. Zou Y., Wang X., Khan A., Wang P., Liu Y., Alsaedi A., Hayat T., Wang X. Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of Heavy Metal Ions:A Review. Environ. Sci. Technol. 2016. 50(14): 7290. https://doi.org/10.1021/acs.est.6b01897
5. Trujillo-Reyes J., Peralta-Videa J.R., Gardea-Torresdey J.L. Supported and unsupported nanomaterials for water and soil remediation: Are they a useful solution for worldwide pollution? J. Hazard. Mater. 2014. 280: 487. https://doi.org/10.1016/j.jhazmat.2014.08.029
6. Zhao X., Liu W., Cai Z., Han B., Qian T., Zhao D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016. 100: 245. https://doi.org/10.1016/j.watres.2016.05.019
7. Petala E., Dimos K., Douvalis A., Bakas T, Tucek J, Zbořil R, Karakassides M. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity particles for Cr(VI) removal from aqueous solution. J. Hazard. Mater. 2013. 261: 295. https://doi.org/10.1016/j.jhazmat.2013.07.046
8. Liu Z., Zhang F., Hoekman S.K., Liu T., Gai C., Peng N. Homogeneously dispersed zerovalent iron nanoparticles supported on hydrochar-derived porous carbon: simple, in situ synthesis and use for dechlorination of PSBs. ACS Sustainable Chem. Eng. 2016. 4(6): 3261. https://doi.org/10.1021/acssuschemeng.6b00306
9. Lv X., Hu Y., Tang J., Sheng T., Jiang G., Xu X. Effect of co-existing ions and natural organic matter on removal of chromium (VI) from aqueous solution by nanoscale zero-valent iron (nZVI)-Fe3O4 nanocomposites. Chem. Eng. J. 2013. 218: 55. https://doi.org/10.1016/j.cej.2012.12.026
10. Li Z.J., Wang L., Yuan L.Y., Xiao C.L., Mei L., Zheng L.R., Zhang J., Yang J.H., Zhao Yu.L., Chai Z.F., Shi W.Q. Efficient removal of uranium from aqueous solution by zero-valent iron nanoparticle and its graphene composite. J. Hazard. Mater. 2015. 290: 26. https://doi.org/10.1016/j.jhazmat.2015.02.028
11. Lv X., Xue X., Jiang G., Wu D., Sheng T., Zhou H., Xu X. Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution. J. Colloid Interface Sci. 2014. 417: 51. https://doi.org/10.1016/j.jcis.2013.11.044
12. Ezzatahmadi N., Ayoko G.A., Millar G.J., Speight R., Yan C., Li J., Li S., Zhu J., Xi Yu. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chem. Eng. J. 2017. 312: 336. https://doi.org/10.1016/j.cej.2016.11.154
13. Bergaya F., Theng B.K.G., Lagaly G. Developments in Clay Science. Handbook of Clay Science. V. 1. (Oxford: Elsevier, 2006).
14. Üzüm C., Shahwan T., Eroglu A., Hallam K.R., Scott T.B., Lieberwirth I. Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl. Clay Sci. 2009. 43(2): 172. https://doi.org/10.1016/j.clay.2008.07.030
15. Zhang X., Lin S., Lu X.-Q., Chen Z. Removal of Pb(II) from water using synthesized kaolin supported nanoscale zero-valent iron. Chem. Eng. J. 2010. 163(3): 243. https://doi.org/10.1016/j.cej.2010.07.056
16. Gu C., Jia H., Li H., Teppen B.J., Boyd S.A. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ. Sci. Technol. 2010.44(11): 4258.
17. Bhowmick S., Chakraborty S., Mondal P., Van Renterghem W., Van den Berghe S., Roman-Ross G., Chatterjee D., Iglesias M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem. Eng. J. 2014. 243: 14. https://doi.org/10.1016/j.cej.2013.12.049
18. Shahwan T., Uzum C., Eroğlu A.E., Lieberwirth I. Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Appl. Clay Sci. 2010. 47(3–4): 257. https://doi.org/10.1016/j.clay.2009.10.019
19. Chen Z., Jin X., Chen Z, Megharaj M., Naidu R. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron. J. Colloid Interface Sci. 2011. 363(2): 601. https://doi.org/10.1016/j.jcis.2011.07.057
20. Sheng G., Shao X., Li Y., Li J., Dong H., Cheng W., Gao X., Huang Y. Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism. J. Phys. Chem. A. 2014. 118(16): 2952. https://doi.org/10.1021/jp412404w
21. Li X., Zhao Y., Xi B., Meng X., Gong B., Li R., Peng X., Liu H. Decolorization of methyl orange by a new clay-supported nanoscale zero-valent iron: synergetic effect, efficiency optimization and mechanism. J. Environ. Sci. 2017. 52: 8. https://doi.org/10.1016/j.jes.2016.03.022
22. Xu S., Boyd S.A. Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir. 1995. 11(7): 2508. https://doi.org/10.1021/la00007a033
23. Pang Z., Yan M., Jia X., Wang Z., Chen J. Debromination of decabromodiphenyl ether by organo-montmorillonite supported nanoscale zero-valent iron: Preparation, characterization and influence factors. J. Environ. Sci. 2014. 26: 483. https://doi.org/10.1016/S1001-0742(13)60419-2
24. Li S., Wu P.; Li H., Wu Z.; Li P., Wu J., Wang X., Dang Z. Synthesis and characterization of organo-montmorillonite supported iron nanoparticles. Appl. Clay Sci. 2010. 50(3): 330. https://doi.org/10.1016/j.clay.2010.08.021
25. Wu P., Li S., Ju L., Zhua N., Wu J, Li P., Danga Z. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles. J. Hazard. Mater. 2012. 219-220: 283. https://doi.org/10.1016/j.jhazmat.2012.04.008
26. Zhdanyuk N.V., Kovalchuk I.A., Kornilovych B.Yu. Sorption of uranium(VI) ions by iron-containing nanocomposites based on montmorillonite. Reports of the National Academy of Sciences of Ukraine. 2018. 4: 88. [in Ukrainian]. https://doi.org/10.15407/dopovidi2018.04.088
27. Fu R., Yang Y., Xu Z., Zhang X., Guo X., Bi D. The removal of chromium(VI) and lead(II) from groundwater using sepiolite-supported nanoscale zero valent iron (S-ZVI). Chemosphere. 2015. 138: 726. https://doi.org/10.1016/j.chemosphere.2015.07.051
28. Frost R., Xi Y., He H. Synthesis, characterization of palygorskite supported zerovalent iron and its application for methylene blue adsorption. J. Colloid Interface Sci. 2010. 341: 153. https://doi.org/10.1016/j.jcis.2009.09.027
29. Ovcharenko F.D. Fizychna khimija dyspersnykh mineraliv. (Kyiv: Naukova dumka, 1997). [in Ukrainian].
30. Galan E., Singer A. Developments in palygorskite-sepiolite research. A new outlook on these nanomaterials. (Oxford: Elsevier, 2011).
31. Zhao X., Liu W., Cai Z., Han B., Qian T., Zhao D. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res. 2016. 100: 245. https://doi.org/10.1016/j.watres.2016.05.019
32. Zhuang G., Wu H., Zhang H., Zhang Z., Zhang X., Liao L. Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures. Appl. Clay Sci. 2017. 137: 50. https://doi.org/10.1016/j.clay.2016.12.015
33. Zhdanyuk N., Kovalchuk I., Kornilovyich B. Obtaining stabilized nanodispersed iron based on organofilized montmorillonite. Eastern European Journal of Enterprise Technologies. 2016. 5/6: 23. https://doi.org/10.15587/1729-4061.2016.79452
34. Brindley G., Brown G. Crystal structures of clay minerals and their X-ray indentification. (London: Miner, 1980).
35. Suarez M., Garcia-Romero E. FTIR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet. Appl. Clay Sci. 2006. 31: 154. https://doi.org/10.1016/j.clay.2005.10.005
36. Guo H., Jing X., Zhang L., Wang J. Preparation of inorganic–organic pillared montmorillonite using ultrasonic treatment. J. Mater. Sci. 2007. 42: 6951. https://doi.org/10.1007/s10853-006-1329-4
37. Stumm W. Chemistry of the solid-water interface. (New York/Chishester/Brisbane/Toronto/Singapore: Wiley – Interscience, 1992).
38. Kornilovych B.Yu., Sorokin O.G., Pavlenko V.M., Koshyk Yu.I. Pryrodooxoronni texnologiyi v uranovydobuvnij ta pererobnij promyslovosti. (Kyiv: Norma, 2011). [in Ukrainian].
40. Sheng G., Shao X., Li Y., Li J., Dong H., Cheng W., Gao X., Huang Y. Enhanced removal of uranium(VI) by nanoscale zerovalent iron supported on Na-bentonite and an investigation of mechanism. J. Phys. Chem. A. 2014. 118: 2952. https://doi.org/10.1021/jp412404w
DOI: https://doi.org/10.15407/hftp10.01.048
Copyright (©) 2019 N. V. Zhdanyuk, I. A. Kovalchuk, B. Yu. Kornilovych
This work is licensed under a Creative Commons Attribution 4.0 International License.