Chemistry, Physics and Technology of Surface, 2019, 10 (1), 75-86.

Quantum chemical study on the interaction of carbon nanotube with polyethylene and polypropylene oligomers



DOI: https://doi.org/10.15407/hftp10.01.075

M. I. Terets, E. M. Demianenko, S. V. Zhuravsky, O. A. Сhernyuk, V. S. Kuts, A. G. Grebenyuk, Yu. I. Sementsov, L. M. Kokhtych, M. T. Kartel

Abstract


The results of the study on the properties of carbon nanotubes-polymer nanocomposites have shown that the use of nanotubes (CNT) to fill the polymer matrices of different species significantly alter their physical properties compared to the original polymers. However, the influence of CNT on the properties of nanocomposites obtained at the molecular level has not yet been completely ascertained. Therefore, the purpose of this work was to examine the interaction of CNT with fragments of polymers of the same nature, but somewhat different structure, for example, polyethylene and polypropylene by means of quantum chemistry.

By method of density functional theory with the exchange-correlation functional B3LYP, the basis set 6-31G(d,p) and the Grimme dispersion correction, the energy values have been calculated of interaction between carbon nanotube fragments and oligomers of polyethylene and polypropylene, the most probable structures of their intermolecular complexes being optimized.

A graphene-like plane of 40 carbon atoms and 16 atoms of hydrogen was chosen as a model for the outer surface of the multi-walled nanotubes (MWNT). In order to take into account the dimensional effect of the surface of the nanotube fragment model on the interaction energy, in addition to the above described, two larger models were used, with the general formula C54H18 and C96H24.

It has been found that the interaction energy of a carbon nanotube fragment with an oligomer of polypropylene is greater, compared with polyethylene, which is consistent with the experimental data on melting temperatures of pure polymers and nanotube-polymer composites.

The polymer with an outer surface of a carbon nanotube forms an intermolecular complex not bound covalently and retained by intermolecular dispersion forces. Oligomers of polymeric matters and nanotube surfaces in nanocomposites formed are placed closer to each other than separate polymeric links between them.


Keywords


nanocomposite; carbon nanotube; polyethylene; polypropylene; density functional theory method; cluster approximation; dispersion forces of interaction

Full Text:

PDF

References


1. Sheeparamatti B.G, Sheeparamatti R.B. Nanotechnology: Inspiration from nature. IETE Technical Review. 2007. 24(1): 5.

2. Okpala C.C. Nanocomposites – An overview. Int. J. Eng. Res. Dev. 2013. 8(11): 17.

3. Camargo P.H.C., Satyanarayana K.G., Wypych F. Nanocomposites: synthesis, structure, properties and new application opportunities. Mater. Res. 2009. 12(1): 1. https://doi.org/10.1590/S1516-14392009000100002

4. Zeranska-Chudek K., Lapinska A., Wroblewska A., Judek J., Duzynska A., Pawlowski M., Witowski A.M., Zdrojek M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018. 8: 9132. https://doi.org/10.1038/s41598-018-27317-0

5. Taraghi I., Fereidoon A., Paszkiewicz S., Zbigniew R.Nanocomposites based on polymer blends: enhanced interfacial interactions in polycarbonate/ethylene-propylene copolymer blends with multi-walled carbon nanotubes. Compos. Interfaces. 2018. 25(3): 275. https://doi.org/10.1080/09276440.2018.1393253

6. Mishchenko S.V., Tkachev A.G. Carbon nanomaterials. Production, properties, application. (Moscow: Mechanical engineering, 2008). [in Russian].

7. Krychkov Y.A., Krychkov M.V., Vymorkov N.V., Portnova Y.M., Bushansky N.V., Bushansky S.N. Reparation of polymeric nanocomposites by using granulated multilayer carbon nanotubes. Composites and Nanostructures. 2014. 6(4): 223. [in Russian].

8. Lau K.T. Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 2003. 370(3–4): 399. https://doi.org/10.1016/S0009-2614(03)00100-3

9. Coleman J.N., Curran S., Dalton A.B., Davey A.P., McCarthy B., Blau W., Barklie R.C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B. 1998. 58: 7492. https://doi.org/10.1103/PhysRevB.58.R7492

10. Sementsov Yu.I., Makhno S.N., Zhuravsky S.V., Kartel M.T. Properties of polyethylene–carbon nanotubes composites. Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 107. [in Ukrainain]. https://doi.org/10.15407/hftp08.02.107

11. Sementsov Yu.I., Prikhodko G.P, Kartel N.T., Mahno S.M., Grabovsky Yu.E., Aleksyeyev O.M., Pinchuk-Rugal T.M. Polypropylene-carbon nanotubes composites: structural features, physical and chemical properties. Surface. 2012. 4(19): 203. [in Ukrainian].

12. Kotenok O.V., Makhno S.M., Prikhod'ko G.P., Sementsov Yu.I. Electrophysical properties of system polytetrafluorethylene – carbon nanotubes. Surface. 2009. 1(16): 213. [in Ukrainain].

13. Mazurenko R.V., Zhuravsky S.V., Gunya G.M., Prikhod'ko G.P., Makhno S.N., Gorbik P.P., Kartel M.T. Electrophysical properties of polymer composites on the basis of multiwalled carbon nanotubes synthesized on a basalt scale. Him. Fiz. Tehnol. Poverhni. 2014. 5(2): 220. [in Ukrainain].

14. Garkusha O.M., Makhno S.M., Prikhod'ko G.P., Sementsov Yu.I., Kartel M.T. Structural features and properties of polymeric nanocomposites with low concentrations of fillers. Him. Fiz. Tehnol. Poverhni. 2010. 1(1): 103. [in Ukrainain].

15. Mylvaganam K., Zhang L. C. Chemical bonding in polyethylene−nanotube composites: a quantum mechanics prediction. J. Phys. Chem. B. 2004. 108(17): 5217. https://doi.org/10.1021/jp037619i

16. Tretiak S. Triplet state absorption in carbon nanotubes: a TD−DFT. Study Nano Lett. 2007. 7(8): 2201. https://doi.org/10.1021/nl070355h

17. Ahangari M. G., Fereidoon A., Ganji M.D. Density functional theory study of epoxy polymer chains adsorbing onto single-walled carbon nanotubes: electronic and mechanical properties. J. Mol. Model. 2013. 19(8): 3127. https://doi.org/10.1007/s00894-013-1852-6

18. Ivanovskaya V.V., Ivanovskii A.L. Some approaches in computer material science of inorganic nanostructures. Nanostructures. Mathematical physics and modeling. 2009. 1(1):7. [in Russian].

19. Zhang Q., Zhao X., Sui G., Yang X. Surface sizing treated MWCNTs and its effect on the wettability, interfacial interaction and flexural properties of MWCNT/Epoxy nanocomposites. Nanomater. 2018. 8(9): 680. https://doi.org/10.3390/nano8090680

20. Smeu M., Zahid F., Ji W., Guo H., Jaidann M., Abou-Rachid H. Energetic molecules encapsulated inside carbon nanotubes and between graphene layers: dft calculations. J. Phys. Chem. C. 2011. 115(22): 10985. https://doi.org/10.1021/jp201756p

21. Umadevi D., Panigrahi S., Sastry G.N. Noncovalent interaction of carbon nanostructures. Acc. Chem. Res. 2014. 47(8): 2574. https://doi.org/10.1021/ar500168b

22. Voitko K.V., Demianenko E.M., Bakalinska O.M., Tarasenko Yu. Quantum chemical study on thermodynamic and kinetic characteristics of the interaction between hydroxyl radical and graphite–like planes. CPTS. 2017. 8(4): 357.

23. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913

24. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785

25. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112

26. Jackson K., Jaffar S.K., Paton R.S. Computational organic chemistry. Annual Reports Section B (Organic Chemistry). 2013. 109: 235. https://doi.org/10.1039/c3oc90007j

27. Hutchison G.R., Ratner M.A., Marks T.J. Intermolecular charge transfer between heterocyclic oligomers. effects of heteroatom and molecular packing on hopping transport in organic semiconductors. J. Am. Chem. Soc. 2005. 127(48): 16866. https://doi.org/10.1021/ja0533996

28. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput Chem. 2011. 32(7): 1456. https://doi.org/10.1002/jcc.21759

29. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1(2): 211. https://doi.org/10.1002/wcms.30

30. Alrawashdeh A.I., Lagowski J.B. The role of the solvent and the size of the nanotube in the non-covalent dispersion of carbon nanotubes with short organic oligomers – a DFT study. RSC Adv. 2018. 8(53): 30520. https://doi.org/10.1039/C8RA02460J

31. Dolgonos G.A., Loboda O.A., Boese A.D. Development of embedded and performance of density functional methods for molecular crystals. J. Phys. Chem. A. 2018. 122(2): 708. https://doi.org/10.1021/acs.jpca.7b12467

32. Boese A.D., Sauer J. Embedded and DFT calculations on the crystal structures of small alkanes, notably propane. Cryst. Growth. Des. 2017. 17(4): 1636. https://doi.org/10.1021/acs.cgd.6b01654

33. Wales D.J., Berry R.S. Limitations of the Murrell-Laidler theorem. J. Chem. Soc. Faraday Trans. 1992. 88(4): 543. https://doi.org/10.1039/FT9928800543

34. Sun S.F. Physical Chemistry of Macromolecules: Basic Principles and Issues. 2nd ed. (New York: Wiley, 2004). https://doi.org/10.1002/0471623571

35. Lodge T.P., Muthukumar M. Physical chemistry of polymers: entropy, interactions, and dynamics. J. Phys. Chem. 1996. 100(31): 13275. https://doi.org/10.1021/jp960244z

36. Yang Y., Ding X., Urban M.W. Chemical and physical aspects of self-healing materials. Prog. Polym. Sci. 2015. 49–50: 34. https://doi.org/10.1016/j.progpolymsci.2015.06.001

37. Nikmatin S., Syafiuddin A., Beng Hong Kueh A., Maddu A. Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles. J. Appl. Polym. Sci. Tech. 2017. 15(4): 386. https://doi.org/10.1016/j.jart.2017.03.008

38. Grebowicz J., Lau S.F., Wunderlich B. The thermal properties of polypropylene J. Polym. Sci. Polym. Symp. 1984. 71(1): 19. https://doi.org/10.1002/polc.5070710106

39. Niemczyk A., Dziubek K., Sacher-Majewska B., Czaja K., Dutkiewicz M., Marciniec B. Study of thermal properties of polyethylene and polypropylene nanocomposites with long alkyl chain-substituted POSS fillers. J. Therm. Anal. Calorim. 2016. 125(3): 1287. https://doi.org/10.1007/s10973-016-5497-4

40. Jouni M., Boudenne A., Boiteux G., Massardier V., Garnier B., Serghei A. Electrical and thermal properties of polyethylene/silver nanoparticle composites. Polym. Compos. 2013. 34(5): 778. https://doi.org/10.1002/pc.22478




DOI: https://doi.org/10.15407/hftp10.01.075

Copyright (©) 2019 M. I. Terets, E. M. Demianenko, S. V. Zhuravsky, O. A. Сhernyuk, V. S. Kuts, A. G. Grebenyuk, Yu. I. Sementsov, L. M. Kokhtych, M. T. Kartel

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.