Theoretical study on the effect of carbon graphenous nanoclusters on the stability and capacity of polyamide in a nanocomposite
DOI: https://doi.org/10.15407/hftp10.04.355
Abstract
By the density functional theory method with the exchange-correlation functional B3LYP, the basis set 6-31G(d,p) and Grimme dispersion corrections, the energy values has been calculated of intermolecular interaction between adjacent polyamide fragments, and the effect of graphene-like nanoclusters on the similar values for intermolecular complexes of polyamide fragments with graphene-like nanoclusters has been evaluated. The effect of carbon materials on the energy magnitudes of covalent bonds in the polymer matrix of polyamide has been also examined.
Comparison of the energy values of intermolecular interaction between two monomers (‑86.0 kJ/mol, two hydrogen bonds) and two dimers (-302.0 kJ/mol, three hydrogen bonds) indicates that the energy of interaction between two components consists of that of hydrogen bonds and the energy contribution of dispersive forces.
The energy of intermolecular interaction between two dimers with the graphene matrix (C110H26) is approximately 40 kJ/mol higher (-346.2 kJ/mol) compared to respective value for two monomers. The less value of the interaction energy (-325.0 kJ/mol) for the nanocomposite with C96H24 species is due to the insufficient size of the selected model for the graphene matrix.
The analysis of the hydrogen bond lengths between the oxygen atom of carbonyl group and hydrogen one of amino group indicates that, regardless of length of linkage of the polymeric chain of polyamide (monomer and dimer) and the size of the graphene-like matrix (C96H24 and C110H26) in the nanocomposite, the hydrogen bond in composites is shorter in comparison with a those values in complexes without a carbon matrix. This indicates a greater strength of the bond, that is, the presence of a carbon matrix increases the strength of the formed nanocomposite, that explains the increase in the melting point compared with that of the original polymer. In the nanocomposite formed polyamide - a carbon matrix for all the models studied, the energy of intermolecular interaction in the nanocomposite increases significantly compared to respective value between two fragments of pure polyamide, so indicating an increase in the thermal stability of this nanocomposite what is confirmed by experimental data.
Keywords
References
1. Shaoyun Fu, Zheng Sun, Pei Huang, Yuanqing Li Ning Hu. Some basic aspects of polymer nanocomposites: A critical review. Nano Materials Science. 2019. 1(1): 2. https://doi.org/10.1016/j.nanoms.2019.02.006
2. Zeranska-Chudek K., Lapinska A., Wroblewska A., Judek J., Duzynska A., Pawlowski M., Witowski A.M., Zdrojek M. Study of the absorption coefficient of graphene-polymer composites. Sci. Rep. 2018. 8: 9132. https://doi.org/10.1038/s41598-018-27317-0
3. Krychkov Y.A., Krychkov M.V., Vymorkov N.V. Portnova Y.M., Bushansky N.V., Bushansky S.N. Preparation of polymeric nanocomposites by using granulated multilayer carbon nanotubes. Composites and nanostructures. 2014. 6(4):223. [in Russian].
4. Chesnokov N.V., Kuznetsov B.N., Mikova N.M. Synthesis and Properties of Carbonaceous and Composite Materials from Natural Graphite. Journal of Siberian Federal University. Chemistry. 2013. 6(1): 11. [in Russian].
5. Wang M., Yan C., Lin M. Graphene Nanocomposites. Composites and Their Properties. 2012: 17. https://doi.org/10.5772/50840
6. Lau K.T. Interfacial bonding characteristics of nanotube/polymer composites. Chem. Phys. Lett. 2003. 370(3-4): 399. https://doi.org/10.1016/S0009-2614(03)00100-3
7. Mishchenko S.V., Tkachev A.G. Carbon Nanomaterials. Production, Properties, Application. (Moscow: Mechanical engineering, 2008). [in Russian].
8. Coleman J.N., Curran S., Dalton A.B., Davey A.P., McCarthy B., Blau W., Barklie R.C. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Phys. Rev. B. 1998. 58: 7492. https://doi.org/10.1103/PhysRevB.58.R7492
9. Lisova O.M., Makhno S.M., Gunya G.M., Sementsov Yu.I., Kartel M.T. Electronic power systems polyamide - graphene nanoplates. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. 15(2): 289. [In Ukrainian].
10. Kartel M., Sementsov Yu., Mahno S., Trachevskiy V., Wang Bo. Polymer composites filled with multiwall carbon nanotubes. Universal J. Mater Sci. 2016. 4(2): 23. https://doi.org/10.13189/ujms.2016.040202
11. Zhang Q., Zhao X., Sui G., Yang X. Surface sizing treated MWCNTs and its effect on the wettability, interfacial interaction and flexural properties of MWCNT/Epoxy nanocomposites. Nanomaterials (Basel). 2018. 8(9): 680. https://doi.org/10.3390/nano8090680
12. Khostavan S., Fazli M., Ahangari M.G. Rostamiyan Y. The effect of interaction between nanofillers and epoxy on mechanical and thermal properties of nanocomposites: theoretical prediction and experimental analysis. Adv. Polym. Tech. 2019. 4: 1. https://doi.org/10.1155/2019/8156718
13. Mehdizadeh K., Giahi M. A DFT study on N-6-amino-hexylamide functionalized single-walled carbon nanotubes in interaction with silver ion in a gaseous environment. J. Nanostructure Chem. 2019. 9(1): 39. https://doi.org/10.1007/s40097-019-0296-7
14. Terets M.I., Demianenko E.M., Zhuravsky S.V. Chernyuk O.A., Kuts V.S., Grebenyuk A.G., Sementsov Yu.I., Kokhtych L.M., Kartel M.T. Quantum chemical study on the interaction of carbon nanotube with polyethylene and polypropylene oligomers. Him. Fiz. Tehnol. Poverhni. 2019. 10(1): 75.
15. Sementsov Yu.I., Makhno S.N., Zhuravsky S.V., Kartel M.T. Properties of polyethylene-carbon nanotubes composites Him. Fiz. Tehnol. Poverhni. 2017. 8(2): 107. [in Ukrainain]. https://doi.org/10.15407/hftp08.02.107
16. Sementsov Yu.I., Prikhodko G.P, Kartel N.T., Mahno S.M., Grabovsky Yu.E., Aleksyeyev O.M., Pinchuk-Rugal T.M. Polypropylene-carbon nanotubes composites: structural features, physical and chemical properties. Surface. 2012. 4(19): 203. [in Ukrainain].
17. Sun S.F. Physical Chemistry of Macromolecules: Basic Principles and Issues. (New York: Wiley, 2004). https://doi.org/10.1002/0471623571
18. Becke A.D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993. 98(7): 5648. https://doi.org/10.1063/1.464913
19. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988. 37(2): 785. https://doi.org/10.1103/PhysRevB.37.785
20. Grimme S., Ehrlich S., Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011. 32: 1456. https://doi.org/10.1002/jcc.21759
21. Grimme S. Density functional theory with London dispersion corrections. WIREs Comput. Mol. Sci. 2011. 1: 211. https://doi.org/10.1002/wcms.30
22. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993. 14(11): 1347. https://doi.org/10.1002/jcc.540141112
DOI: https://doi.org/10.15407/hftp10.04.355
Copyright (©) 2019 E. M. Demianenko, M. I. Теrets, Yu. I. Sementsov, S. M. Makhno, V. S. Kuts, A. G. Grebenyuk, M. T. Kartel
This work is licensed under a Creative Commons Attribution 4.0 International License.