Chemistry, Physics and Technology of Surface, 2019, 10 (4), 377-388.

The influence of titanium dioxide modification by sulfur and carbon on physico-chemical and photocatalytic properties



DOI: https://doi.org/10.15407/hftp10.04.377

M. V. Shapovalova, T. A. Khalyavka, O. Y. Khyzhun, N. D. Shcherban, V. V. Permyakov, S. N. Scherbakov

Abstract


The nanocomposites based on TiO2 doped with sulfur (S/TiO2), carbon (C/TiO2), carbon and sulfur (S/C/TiO2) have been obtained. The powders were characterized by XRD, XPS, BET, SEM, EDX, TEM and UV-VIS spectroscopy. EDX and XPS spectroscopies prove that titanium dioxide powder includes only Ti and O elements, composites C/TiO2 include the elements Ti, O, C, composites S/TiO2 - Ti, O, S and composites C/S/TiO2 - Ti, O, C, and S.

XRD analysis revealed phase of anatase in all composites, rutile phase appeared with increasing of sulfur amount in sulfur-containing powders. It has been found that composites consist of roundish agglomerates in the range of 5–30 mm. Sulfur additives decrease grain growth of titanium dioxide particles from 14 to 9–10 nm in S/TiO2 composites, carbon leads to increase in particle size from 14 to 19 nm, simultaneous modification of titanium dioxide by carbon and sulfur leads to the formation of particles with sizes of 7–8 nm.

Analysis of nitrogen sorption–desorption isotherms for all synthesized samples has shown the presence of a hysteresis loop which is the evidence for mesoporous structure of the powders. The isotherms correspond to type IV of IUPAC classification for mesoporous materials with H1 type for C/TiO2 and H2 type for S/TiO2, and C/S/TiO2 of hysteresis loop. The modification of TiO2 by carbon and sulfur leads to increase of specific surface area (of about 1.8 times in the case of C/TiO2, about 3.3 times for S/TiO2 and about 4.7 times for C/S/TiO2), average pore volume and decrease of radius pore volume compared with TiO2.

Absorption spectra of nanocomposites showed a bathochromic shift as compared with the absorption band of pure TiO2. It has been found that modification leads to band gap narrowing. Nanocomposite samples showed higher photocatalytic activity in the destruction of safranine T under UV and visible irradiation compared to pure TiO2. It may be related to the participation of dopants in the inhibition of electron-hole recombination, prolongation of charges lifetime, increasing efficiency of interfacial charge separation and formation of doping electronic states.


Keywords


nanocomposites; titanium dioxide; carbon; sulfur; safranine T; photocatalytic activity

Full Text:

PDF

References


1. Barberio M., Barone P., Imbrogno A., Ruffolo S. A., La Russa M., Arcuri N., Xu F. Study of Dye Absorption in Carbon Nanotube-Titanium Dioxide Heterostructures. J. Chem. Chem. Eng. 2015. 9(5): 245. https://doi.org/10.17265/1934-7375/2015.04.002

2. Chorna N., Smirnova N., Vorobets V., Kolbasov G., Linnik O. Nitrogen doped iron titanate films: photoelectrochemical, electrocatalytic, photocatalytic and structural features. Appl. Surf. Sci. 2019. 473(15): 343. https://doi.org/10.1016/j.apsusc.2018.12.154

3. Shestopal N., Linnik O., Smirnova N. Influence of metal and non-metal ions doping on the structural and photocatalytic properties of titania films. Him. Fiz. Tehnol. Poverhni. 2015. 6(2): 203. https://doi.org/10.15407/hftp06.02.203

4. Park Y., Kim W., Park H., Tachikawa T., Majima T., Choi W. Carbon-doped TiO2 photocatalyst synthesized without using an external carbon precursor and the visible light activity. Appl. Catal. B. 2009. 91: 355. https://doi.org/10.1016/j.apcatb.2009.06.001

5. Wang Sh., Zhao L., Bai L., Yan J., Jiang Q., Lian J. Enhancing photocatalytic activity of disorder engineered C/TiO2 and TiO2 nanoparticles. J. Mater. Chem. A. 2014. 2: 7439. https://doi.org/10.1039/C4TA00354C

6. Bondarenko M., Khalyavka T., Melnyk A., Camyshan S., Panasuk Ya. Paramagnetic and Photocatalytic Properties of C-S Co-Doped TiO2 Nanocatalysts. J. Nano- Electron. Phys. 2018. 10(6): 06039-1. https://doi.org/10.21272/jnep.10(6).06039

7. Ansón-Casaos A., Tacchini I., Unzue A., Martínez M. Combined modification of a TiO2 photocatalyst with two different carbons forms. Appl. Surf. Sci. 2013. 270: 675. https://doi.org/10.1016/j.apsusc.2013.01.120

8. Lin C., Song Y., Cao L., Chen Sh. Effective photocatalysis of functional nanocomposites based on carbon and TiO2 nanoparticles. Nanoscale. 2013. 5(11): 4986. https://doi.org/10.1039/c3nr01033c

9. Yuan L., Wei X., Martinez J.P., Yu C., Panahi N., Gan J.B., Zhang Y., Gan Y.X. Reaction Spinning Titanium Dioxide Particle-Coated Carbon Fiber for Photoelectric Energy Conversion. Fibers. 2019. 7(5): 49. https://doi.org/10.3390/fib7050049

10. Bondarenko M., Khalyavka T., Petrik I., Camyshan S. Photocatalytic activity of TiO2-C nanocomposites in the oxidation of Safranin T under UV and visible light. Theor. Exp. Chem. 2018. 54(1): 40. https://doi.org/10.1007/s11237-018-9543-0

11. Khalyavka T., Bondarenko M., Shcherban N., Petrik I., Melnik A. Effect of the C and S additives on structural, optical and photocatalytic properties of TiO2. Appl. Nanosci. 2018. 8(46): 1. https://doi.org/10.1007/s13204-018-0838-1

12. Lei X., Xue X., Yang H., Chen C., Li X., Pei J., Niu M., Yang Y., Gao X. Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). J. Alloys Compd. 2015. 646: 541. https://doi.org/10.1016/j.jallcom.2015.04.233

13. Yang G., Yan Z., Xiao T. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Appl. Surf. Sci. 2012. 258(8): 4016. https://doi.org/10.1016/j.apsusc.2011.12.092

14. Patent 1639892 SU. MKI, B22F9/02, 9/14 (Buleten No 16). Trikhleb V., Strelko V.V. Method of production of micro-, mesoporous carbon adsorbent. 2016. [in Ukrainian].

15. Rajagopal S., Nataraj D., Khyzhun O.Yu., Djaoued Y., Robichaud J., Senthil K., Mangalaraj D. Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of pyrazine intercalated MoO3 hybrid nanostructures. Cryst. Eng. Comm. 2011. 13(7): 2358. https://doi.org/10.1039/c0ce00303d

16. HenrichV.E., CoxP.A. The Surface Science of Metal Oxides. (Cambridge: Cambridge University Press, 1994).

17. Khyzhun O., Solonin Y., Dobrovolsky V. Electronic structure of hexagonal tungsten trioxide: XPS, XES, and XAS studies. J. Alloys Compd. 2001. 320(1): 1. https://doi.org/10.1016/S0925-8388(00)01454-7

18. Ivanov S., Barylyak A., Besaha K., Bund A., Bobitski Y., Wojnarowska-Nowak R., Yaremchuk I., Kus-Liśkiewicz M. Synthesis, Characterization, and Photocatalytic Properties of Sulfur- and Carbon-Codoped TiO2 Nanoparticles. Nanoscale. Res. Lett. 2016. 11(1): 140. https://doi.org/10.1186/s11671-016-1353-5

19. Rockafellow E., Stewart L., Jenks W.S. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Appl. Catal. B. 2009. 91: 554. https://doi.org/10.1016/j.apcatb.2009.06.027

20. Colon G., Hidalgo M.C., Munuera G., Ferino I., Cutrufello M.G., Navio J.A. Cu-doped TiO2 systems with improved photocatalytic activity. Appl. Catal. B. 2006. 67(1-2): 41. https://doi.org/10.1016/j.apcatb.2006.03.019

21. Yu J.C., Ho W., Yu J., Yip H., Wong P.K., Zhao J. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania. Environ. Sci. Technol. 2005. 39(4): 1175. https://doi.org/10.1021/es035374h

22. Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T. Photocatalytic Activity of S-Doped TiO2 Photocatalyst Under Visible Light. Chem. Lett. 2003. 32(4): 364. https://doi.org/10.1246/cl.2003.364

23. Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg G.E. Handbook of X-ray Photoelectron Spectroscopy. (Perkin-Elmer, Co., Minnesota, 1979).

24. Wu Z., Dong F., Zhao W., Wang H., Liu Y., Guan B. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnol. 2009. 20(23): 235701. https://doi.org/10.1088/0957-4484/20/23/235701

25. Palanivelu K., Im J.S., Lee Y.-S. Carbon Doping of TiO2 for Visible Light Photo Catalysis - A review. Carbon Lett. 2007. 8(3): 214. https://doi.org/10.5714/CL.2007.8.3.214

26. Peng W., Li H., Liu Y., Song S. Adsorption of methylene blue on graphene oxide prepared from amorphous graphite: Effects of pH and foreign ions. J. Mol. Liq. 2016. 221: 82. https://doi.org/10.1016/j.molliq.2016.05.074

27. Bondarenko M.V., Khalyavka T.A., Shcherban N.D., Tsyba N.N. Mesoporous Nanocomposites Based on Titanium Dioxide and Carbon as Perspective Photocatalysts for Water Purification. Nanosistemi, Nanomateriali, Nanotehnologii. 2017. 15(1): 99.

28. Gu D.E., Lu Y., Yang B.C., Hu Y.D. Facile preparation of micro-mesoporous carbon-doped TiO2 photocatalysts with anatase crystalline walls under template-free condition. Chem. Commun. 2008. 21: 2453. https://doi.org/10.1039/b800596f

29. Dubey P.K., Tripathi P., Tiwari R.S., Sinha A.S.K., Srivastava O.N. Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production. Int. J. Hydrogen Energy. 2014. 39(29): 16282. https://doi.org/10.1016/j.ijhydene.2014.03.104

30. Li X., Xiong R., Wei G. Preparation and photocatalytic activity of nanoglued Sn-doped TiO2. J. Hazard. Mater. 2009. 164(2-3): 587. https://doi.org/10.1016/j.jhazmat.2008.08.069

31. Devi L.G., Kavitha R. Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: a new insight into the bulk and surface modification. Mater. Chem. Phys. 2014. 143(3): 1300. https://doi.org/10.1016/j.matchemphys.2013.11.038

32. Huang W.F., Chen H.T., Lin M.C. Density functional theory study of the adsorption and reaction of H2S on TiO2 rutile (110) and anatase (101) surfaces. J. Phys. Chem. C. 2009. 113(47): 20411. https://doi.org/10.1021/jp906948a

33. Zhang F., Wang M., Zhu X., Hong B., Wang W., Qi Z., Xie W., Ding J., Bao J., Sun S., Gao C. Effect of surface modification with H2S and NH3 on TiO2 for adsorption and photocatalytic degradation of gaseous toluene. Appl. Catal. B. 2015. 170-171: 215. https://doi.org/10.1016/j.apcatb.2015.01.045

34. Fu X.L., Long J.L., Wang X.X., Leung D.Y.C., Ding Z.X., Wu L., Zhang Z.Z., Li Z.H., Fu X.Z. Photocatalytic reforming of biomass: A Systematic study of hydrogen evolution from glucose solution. Int. J. Hydrogen Energy. 2008. 33(22): 6484. https://doi.org/10.1016/j.ijhydene.2008.07.068

35. Shaban Y.A., El Maradny A.A., Al Farawati R.Kh. Photocatalytic removal of polychlorinated biphenyls (PCBs) using carbon-modified titanium oxide nanoparticles. Appl. Surf. Sci. 2016. 328: 114. https://doi.org/10.1016/j.apsusc.2016.01.001




DOI: https://doi.org/10.15407/hftp10.04.377

Copyright (©) 2019 M. V. Shapovalova, T. A. Khalyavka, O. Y. Khyzhun, N. D. Shcherban, V. V. Permyakov, S. N. Scherbakov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.