Chemistry, Physics and Technology of Surface, 2019, 10 (4), 398-409.

Synthesis O-g-C3N4/TiO2 rutile composite material for photocatalytic application



DOI: https://doi.org/10.15407/hftp10.04.398

M. E. Bondarenko, P. M. Silenko, Yu. M. Solonin, N. I. Gubareni, O. Yu. Khyzhun, N. Yu. Ostapovskaya

Abstract


The development of novel materials ensuring the use of solar radiation as an inexhaustible source of renewable and environmentally friendly energy is one of the actual problems of materials science. Scientific research towards of solving this important task showed the expediency of using photocatalytic processes with the participation of semiconductor systems. One of the most well-known catalyst titanium dioxide TiO2 has photoactivity only in the ultraviolet region of the spectrum that significantly restricts its use. The application of based on undoped graphite-like carbon nitride g-C3N4 or g-C3N4/TiO2 composite catalysts allows using only part of the visible spectrum of solar radiation (with a wavelength of less than 460 nm). It is found that the doping of carbon nitride by oxygen significantly improves its photocatalytic properties to enhancing solar energy utilization. Therefore, to improve the photocatalytic activity of semiconductor photocatalyst, the coupling O-doped g-C3N4 (O-g-C3N4) with rutile TiO2 is a good strategy. Novel composite material O-g-C3N4/TiO2 was synthesized by gas phase method of deposition of        O-doped g-C3N4 on particles of rutile powder under the special reactionary conditions of the pyrolysis of melamine. Obtaining O-g-C3N4/TiO2 binary composite was confirmed through various analytical techniques including X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectra (UV-Vis-DRS) methods. It is found that the absorption spectra of the O-g-C3N4/TiO2 powders show a bathochromic shift of the long-wavelength edge of the fundamental absorption band (to 600 nm) relative to the absorption band of g-C3N4/TiO2 (~ 460 nm). As a result, O-g-C3N4/TiO2 photosensitivity is observed in the significant part of the visible region and the band gap of synthesized product is determined to be less than 2.4 eV versus 2.7 eV for undoped g-C3N4 or g-C3N4/TiO2. One stage constructing heterojunction structure of O-g-C3N4/TiO2 composite may be used as a low-cost way to avoid the limitations of each component and realize a synergic effect in promoting the efficient generation and separation of charge carriers, thus boosting the photocatalytic activity to enhancing solar energy utilization.


Keywords


O-g-C3N4/TiO2 composite; O-doped carbon nitride; rutile; photocatalyst; melamine; pyrolysis

Full Text:

PDF

References


1. Zhong R., Zhang Z., Luo S., Zhang Z.C., Huang L., Gu M. Comparison of TiO2 and g-C3N4 2D/2D nanocomposites from three synthesis protocols for visible-light induced hydrogen evolution. Catal. Sci. Technol. 2019. 9(1): 75. https://doi.org/10.1039/C8CY00965A

2. Lei J., Chen B., Lv W., Zhou L., Wang L., Liu Y., Zhang J. Inverse opal TiO2/g-C3N4 composite with heterojunction construction for enhanced visible light-driven photocatalytic activity. Dalton Trans. 2019. 48(10): 3486. https://doi.org/10.1039/C8DT04496A

3. Chen X., Wei J., Hou R., Liang Y., Xie Z., Zhu Y., Zhang X., Wang H. Growth of g-C3N4 on mesoporous TiO2 spheres with high photocatalytic activity under visible light irradiation. Appl. Catal., B. 2016. 188: 342. https://doi.org/10.1016/j.apcatb.2016.02.012

4. Li H., Wu X., Yin S., Katsumata K., Wang Y. Effect of rutile TiO2 on the photocatalytic performance of g-C3N4/brookite-TiO2-xNy photocatalyst for NO decomposition. Appl. Surf. Sci. 2017. 392: 531. https://doi.org/10.1016/j.apsusc.2016.09.075

5. Wen J., Xie J., Chen X., Li X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017. 391: 72. https://doi.org/10.1016/j.apsusc.2016.07.030

6. Grodzyuk G.Ya., Shvalagin V.V., Andryushina N.S., Panasiuk Ya.V., Korzhak G.V., Kuchmy S.Ya., Skoryk N.A. Carbon nitride nanocomposites with layered niobates as photocatalysts for hydrogen evolution from aqueous solutions of organic acids by the action of visible light. Theor. Exp. Chem.. 2018. 54(2): 99. https://doi.org/10.1007/s11237-018-9552-z

7. Andryushina N., Shvalagin V., Korzhak G., Grodzyuk G., Kuchmiy S., Skoryk M. Photocatalytic evolution of H2 from aqueous solutions of two-component electron-donor substrates in the presence of g-C3N4 activated by heat treatment in the KCl + LiCl melt. Appl. Surf. Sci. 2019. 475: 348. https://doi.org/10.1016/j.apsusc.2018.12.287

8. Li J., Shen B., Hong Z. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012. 48(98): 12017. https://doi.org/10.1039/c2cc35862j

9. Yang L.Q., Huang J.F., Shi L., Cao L.Y., Yu Q., Jie Y.N., Fei J., Ouyang H.B., Ye J.H. A surface modification resultant thermally oxidized porous g-C3N4 with enhanced photocatalytic hydrogen production. Appl. Catal. B. 2017. 204: 335. https://doi.org/10.1016/j.apcatb.2016.11.047

10. Huang Z.F., Song J., Pan L., Wang Z., Zhang X., Zou J.J. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy. 2015. 12: 646. https://doi.org/10.1016/j.nanoen.2015.01.043

11. Qu X., Hu S., Bai J., Li P., Lu G., Kang X. A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment. New J. Chem. 2018. 42(7): 4998. https://doi.org/10.1039/C7NJ04760F

12. Wang H., Guan Y., Hu S., Pei Y., Ma W., Fan Z. Hydrothermal synthesis of band gap-tunable oxygen doped g-C3N4 with outstanding "two channel" photocatalytic H2O2 production ability assisted by dissolution-precipitation process. Nano. 2019. 14(02): 1950023. https://doi.org/10.1142/S1793292019500231

13. Wang C., Fan H., Ren X., Ma J., Fang J., Wang W. Hydrothermally induced oxygen doping of graphitic carbon nitride with a highly ordered architecture and enhanced photocatalytic activity. Chem. Sus. Chem. 2018. 11(4): 700. https://doi.org/10.1002/cssc.201702278

14. Liu S., Li D., Sun H. Ang H.M., Tade M.O., Wang S. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis. J. Colloid Interface Sci. 2016. 468: 176. https://doi.org/10.1016/j.jcis.2016.01.051

15. Qiu P.X., Xu C.M., Chen H., Fang J., Xin W., Ruifeng L., Xirui Z. One step synthesis of oxygen doped porous graphitic carbon nitride with remarkable improvement of photo-oxidation activity: Role of oxygen on visible light photocatalytic activity. Appl. Catal. B. 2017. 206: 319. https://doi.org/10.1016/j.apcatb.2017.01.058

16. Ming L., Yue H., Xu L., Chen F. Hydrothermal synthesis of oxidized g-C3N4 and its regulation of photocatalytic activity. J. Mater. Chem. A. 2014. 2(45): 19145. https://doi.org/10.1039/C4TA04041D

17. Liu X., Ji H., Wang J., Xiao J., Yuan H., Xiao D. Ozone treatment of graphitic carbon nitride with enhanced photocatalytic activity under visible light irradiation. J. Colloid Interface Sci. 2017. 505: 919. https://doi.org/10.1016/j.jcis.2017.06.082

18. Kharlamov A., Bondarenko M., Kharlamova G. Method for the synthesis of water-soluble oxide of graphite-like carbon nitride. Diamond Relat. Mater. 2016. 61: 46. https://doi.org/10.1016/j.diamond.2015.11.006

19. Kharlamov A., Bondarenko M., Kharlamova G., Gubareni N. Features of the synthesis of carbon nitride oxide (g-C3N4)O at urea pyrolysis. Diamond Relat. Mater. 2016. 66: 16. https://doi.org/10.1016/j.diamond.2016.03.012

20. Kharlamov A., Bondarenko M., Kharlamova G., Fomenko V. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C3N4)O. J. Solid State Chem. 2016. 241: 115. https://doi.org/10.1016/j.jssc.2016.06.003

21. Kharlamov O., Bondarenko M., Kharlamova G., Silenko P., Khyzhun O., Gubareni N. Carbon Nitride Oxide (g-C3N4)O and Heteroatomic N-graphene (Azagraphene) as Perspective New Materials in CBRN defense. In: Nanostructured Materials for the Detection of CBRN, NATO Science for Peace and Security Series A: Chemistry and Biolog. (J. Bonca, S. Kruchinin Eds., Springer, Dordrecht, Chapter, V. 20. 2018). P. 245. https://doi.org/10.1007/978-94-024-1304-5_20

22. Bondarenko M., Silenko P., Gubareni N., Khyzhun O., Ostapovskaya N., Solonin Yu. Synthesis of multilayer azagraphene and carbon nitride oxide. Him. Fiz. Tehnol. Poverhni. 2018. 9(4): 393. https://doi.org/10.15407/hftp09.04.393

23. Kharlamov O., Bondarenko M., Kharlamova G. O-Doped Carbon Nitride (O-g-C3N) With High Oxygen Content (11.1 mass. %) Synthesized by Pyrolysis of Pyridine. In: Nanotechnology to Aid Chemical and Biological Defense, NATO Science for Peace and Security Series A: Chemistry and Biology. V. 9. (Dordrecht: Springer Science+Business Media, 2015). P. 129. https://doi.org/10.1007/978-94-017-7218-1_9

24. Kharlamov A.I., Bondarenko M.E., Kharlamova G.A. New method for synthesis of oxygen-doped graphite-like carbon nitride from pyridine. Russ. J. Appl. Chem. 2014. 87(9): 1284. https://doi.org/10.1134/S107042721409016X

25. Kharlamov A.I., Bondarenko M.E., Kirillova N.V. New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ. J. Appl. Chem. 2012. 85(2): 233. https://doi.org/10.1134/S1070427212020127

26. Kelyp O.O., Petrik I.S., Vorobets V.S., Smirnova N.P., Kolbasov G.Ya. Sol-gel synthesis andcharacterization of mesoporous TiO2 modified with transition metal ions (Co, Ni, Mn, Cu). Him. Fiz. Tehnol. Poverhni. 2013. 4(1): 105. https://doi.org/10.15407/hftp04.01.105

27. Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl. Mater Interfaces. 2013. 5(21): 11392. https://doi.org/10.1021/am403653a

28. Wang P., Guo X., Rao L., Wang C., Guo Y., Zhang L. A weak-light-responsive TiO2/g-C3N4 composite film: photocatalytic activity under low-intensity light irradiation. Environ. Sci. Pollut. Res. 2018. 25(20): 20206. https://doi.org/10.1007/s11356-018-2201-1




DOI: https://doi.org/10.15407/hftp10.04.398

Copyright (©) 2019 M. E. Bondarenko, P. M. Silenko, Yu. M. Solonin, N. I. Gubareni, O. Yu. Khyzhun, N. Yu. Ostapovskaya

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.